Читать книгу Muography - Группа авторов - Страница 33

REFERENCES

Оглавление

1 Achard, P., Adriani, O., Aguilar‐Benitez, M., Van den Akker, M., & Alcaraz, J. (2004). Studies of hadronic event structure in e+ e‐ annihilation from 30 to 209 GeV with the L3 detector. Physics Reports, 399(2), 71–174. https://doi.org/10.1016/j.physrep.2004.07.002

2 Adair, R. K., & Kash, H. (1977). Cosmic‐ray muons. In: V. W. Hughes, & C. S. Wu (Eds.), Muon Physics Volume 1: Electromagnetic Interactions. Elsevier. https://doi.org/10.1016/B978‐0‐12‐360601‐3.X5001‐4

3 Aiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., et al. (2009). The 2007 eruption of Stromboli volcano: insights from real time measurements of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and Geothermic Research 182, 221–230. https://doi.org/10.1016/j.jvolgeores.2008.09.013

4 Allkofer, O. C., Bella, G., Dau, W. D., Jokisch, H., Klemke, G., Oren Y., & Uhr, R. (1985). Cosmic ray muon spectra at sea‐level up to 10 TeV. Nuclear Physics B, 259(1), 1–18. https://doi.org/10.1016/0550‐3213(85)90294‐9

5 Allkofer, O. C., Clausen, K., & Dau, W. D. (1975). The low‐momentum muon spectrum near the equator. Lettere al Nuovo Cimento, 12, 107–110. https://doi.org/10.1007/BF02790470

6 Alvarez, L. W., Anderson, J. A., El Bedwei, F., Burkhard, J., Fakhry, A., Girgis, A., et al. (1970). Search for hidden chambers in the pyramid. Science, 167, 832–839. https://doi.org/10.1126/science.167.3919.832

7 Augusto, C. R. A., Kopenkin, V., Navia, C. E., Tsui, K. H., Shigueoka, H., Fauth, A. C., et al. (2012). Variations of the muon flux at sea level associated with interplanetary ICMEs and corotating interaction regions. The Astrophysical Journal, 759, 2, 143. https://doi.org/10.1088/0004‐637X/759/2/143

8 Azuma, K., Tanaka, H. K. M., Suenaga, H., & Suzuki K. (2014). Muographic test measurements for monitoring groundwater. In ISRM International Symposium – 8th Asian Rock Mechanics Symposium, 14–16 October, Sapporo, Japan.

9 Boezio, M., Carlson, P., Francke, T., Weber, N., Suffert, M., Hof, M., et al. (2000). Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus. Physical Review D, 62, 032007. https://doi.org/doi.org/10.1103/PhysRevD.62.032007

10 Borexino Collaboration (2019). Modulations of the cosmic muon signal in ten years of Borexino data. Journal of Cosmology and Astroparticle Physics, 2019, 046. https://doi.org/10.1088/1475‐7516/2019/02/046

11 Bugaev, E. V., Misaki, A., Naumov, V. A., Sinegovskaya, T. S., Sinegovsky, S. I., & Takahashi, N. (1998). Physical Review D, 58, 054001. https://doi.org/10.1103/PhysRevD.58.054001

12 Bull, R., Nash, W. F., & Rustin, B. C. (1965). The momentum spectrum and charge ratio of mesons at sea‐level. Il Nuovo Cimento, 2, 365–384. https://doi.org/10.1007/BF02721030

13 Burton, M. R., Mader, H. M., & Polacci, M. (2007). The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth and Planetary Science Letters, 264, 46–60. https://doi.org/10.1016/j.epsl.2007.08.028

14 Conversi, M. (1950). Experiments on cosmic‐ray mesons and protons at several altitudes and L‐latitudes. Physical Review Journals Archive, 79, 749. https://doi.org/10.1103/PhysRev.79.749

15 Delgado‐Granados H, Cárdenas González L, & Piedad Sánchez N. (2001). Sulfur dioxide emissions from Popocatépetl volcano (México): case study of a high‐emission rate, passively degassing erupting volcano. Journal of Volcanological and Geothermic Research, 108, 107–120. https://doi.org/10.1016/S0377‐0273(00) 00280‐8

16 Daya Bay Collaboration (2018). Seasonal variation of the underground cosmic muon flux observed at Daya Bay. Journal of Cosmology and Astroparticle Physics, 2018, 001. https://doi.org/10.1088/1475‐7516/2018/01/001

17 de Mendonca, R. R. S., Braga, C. R., Echer, E., Dal Lago, A., Rockenbach, M., Such, N. J., & Munakata, K. (2016). Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012. Proceedings of the International Astronomical Union, 12, S328, 130–133. https://doi.org/10.1017/S1743921317003763

18 Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A., & Thompson, G. (2003). SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. Journal of Volcanological and Geothermic Research, 124, 23–43. https://doi.org/10.1016/ S0377‐0273(03)00041‐6

19 Engel, R., Gaisser, T. K., & Stanev, T. (2001). The flux of atmospheric muons. Proceedings of ICRC 2001, 1029–1032.

20 Gaisser T., & Stanev, T. (2008). Particle astrophysics and high‐energy cosmic rays. Physics Letters B, 667, 254–260.

21 George, E. P. (1955). Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1955, 455–457.

22 Groom, D. E., Mokhov, N. V., & Striganov, S. I. (2001). Muon stopping‐power and range tables: 10 MeV–100 TeV. Atomic Data and Nuclear Data Tables, 78, 183–356. https://doi.org/10.1006/adnd.2001.0861

23 Haino, S., Sanuki, T., Abe, K., Anraku, K., Asaoka, Y., Fuke, H., et al. (2004). Measurements of primary and atmospheric cosmic‐ray spectra with the BESS‐TeV spectrometer. Physics Letters B, 594(1–2), 35–46. https://doi.org/10.1016/j.physletb.2004.05.019

24 Hansen, P., Gaisser, T. K., Stanev, T., & Sciutto, S. J. (2005). Influence of the geomagnetic field and of the uncertainties in the primary spectrum on the development of the muon flux in the atmosphere. Physical Review D, 71, 083012. https://doi.org/10.1103/PhysRevD.71.083012

25 Hedenquist, J. W., Aoki, M., & Shinohara H. (1994). Flux of volatiles and ore‐forming metals from the magmatic‐hydrothermal system of Satsuma Iwojima volcano. Geology, 22(7), 585–588. https://doi.org/10.1130/0091‐7613(1994)022<0585:FOVAOF>2.3.CO;2

26 Jokisch, H., Carstensen, K., Dau, W., Meyer, H., & Allkofer, O. (1979). Cosmic‐ray muon spectrum up to 1 TeV at 75° zenith angle. Physical Review D, 19(5), 1368–1372. https://doi.org/10.1103/PhysRevD.19.1368

27 Kazahaya, K., Shinohara H., & Saito, G. (2002). Degassing process of Satsuma‐Iwojima volcano, Japan: Supply of volatile components from a deep magma chamber. Earth, Planets and Space, 54, 327–335. https://doi.org/10.1186/BF03353031

28 Kazahaya, K., Shinohara, H., & Saito, G. (1994). Excessive degassing of Izu‐Oshima volcano: magma convection in a conduit. Bulletin of Volcanology, 56, 207–216. https://doi.org/10.1007/BF00279605

29 Kazahaya, R., & Mori, T. (2016). Interpretations for magmatic process and eruptive phenomena by way of volcanic gas studies. Bulletin of the Volcanological Society of Japan, 61, 155–170. https://doi.org/10.18940/kazan.61.1_155

30 Komazawa, M., Nawa, K., Murata, Y., Makino, M., Morijiri, R., Hiroshima, T., et al. (2005). Gravity map of Yaku Shima district (Bouguer anomalies). Gravity map series 22. Geological Survey of Japan, AIST.

31 Koyama, M., & Umino, S. (1991). Why does the Higashi‐Izu monogenetic volcano group exist in the Izu Peninsula?: Relationships between Late Quaternary volcanism and tectonics in the northern tip of the Izu‐Bonin arc. Journal of Physics of the Earth, 39, 391–420. https://doi.org/10.4294/jpe1952.39.391

32 Kusagaya T., & Tanaka H. K. M. (2015a). Development of the very long‐range cosmic ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe‐dake. Japan. Geoscientific Instrumentation, Methods and Data Systems, 4, 215–226. https://doi.org/10.5194/gi‐4‐215‐2015

33 Kussat, N. H., Chadwell, C. D., & Zimmerman, R. (2005). Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements. IEEE Journal of Oceanic Engineering, 30, 153–164. https://doi.org/10.1109/JOE.2004.835249

34 Kusagaya, T. (2017). Reduction of the background noise in muographic images for detecting magma dynamics in an active volcano. Ph.D. Thesis, The University of Tokyo, Retrieved from https://repository.dl.itc.u‐tokyo.ac.jp/?action=pages_view_main&active_action=repository_view_main_item:detail&item:id=52347&item:no=1&page_id=28&block_id=31

35 Kusagaya T., & Tanaka H. K. M. (2015b). Muographic imaging with a multi‐layered telescope and its application to the study of the subsurface structure of a volcano. Proceedings of the Japan Academy Series B 91, 501–510. https://doi.org/10.2183/pjab.91.501

36 Matsuno, S., Kajino, F., Kawashima, Y., Kitamura, T., Mitsui, K., Muraki, Y., et al. (1984). Cosmic‐ray muon spectrum up to 20 TeV at 89° zentih angle. Physical Review D, 29, 1–23. https://doi.org/10.1103/PhysRevD.29.1

37 Matsushima, J. (2019). Biogenic gas in Tokyo Bay and Bessi Copper Mine. Muographers 2019 Conference, 09 September 10 September, 24 September – 26, September, Tokyo, Japan,

38 Nagamine, K., Iwasaki, M., Shimomura, K., & Ishida, K. (1995). Method of probing inner‐structure of geophysical substance with the horizontal cosmic‐ray muons and possible application to volcanic eruption prediction. Nuclear Instruments and Methods in Physics Research Section A, 356, 585–595. https://doi.org/10.1016/0168‐9002(94)01169‐9

39 Nawa, K., Fukao, Y., Shichi, R., & Murata, Y. (1997). Inversion of gravity data to determine the terrain density distribution in southwest Japan. Journal of Geophysical Research, 102, 27703–27719. https://doi.org/10.1029/97JB02543

40 Nomura, Y., Nemoto, M., Hayashi, N., Hanaoka, S., Murata, M., Yoshikawa, T., et al. (2020). Pilot study of eruption forecasting with muography using convolutional neural network, Scientific Reports 10, 5272. https://doi.org/10.1038/s41598‐020‐62342‐y

41 Oláh, L., Tanaka, H. K. M., Ohminato, T., Hamar, G., & Varga, D. (2019). Plug formation imaged beneath the active craters of Sakurajima Volcano with muography. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL084784

42 Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018). High‐definition and low‐noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8, 3207. https://doi.org/10.1038/s41598‐018‐21423‐9

43 Oppenheimer, C., Lomakina, A. S., Kyle, P. R., Kingsbury, N. G., & Boichu, M. (2009). Pulsatory magma supply to a phonolite lava lake. Earth and Planetary Science Letters, 284, 392–398. https://doi.org/10.1016/j.epsl.2009.04.043

44 Particle Data Group (2020). The Review of Particle Physics. Progress of Theoretical and Experimental Physics 2020, 083C01.

45 Petrova, O. (2019). Particle and Cosmology, 16th Baksan School on Astroparticle Physics. East‐west asymmetry effect in atmospheric muon flux in the Far Detector of NOvA, Retrieved from http://www.inr.ac.ru/~school/lectures/Petrova.pdf

46 Prettyman, T. H., Koontz, S. L., Pinsky, L. S., Empl, A. M, Ittlefehldt, D. W., Reddell, B. D., & Sykes, M. V. (2013). NIAC Phase I Final Report, The National Aeronautics and Space Administration. Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Showers (Grant Number NNX13AQ94G). Retrieved from https://www.nasa.gov/sites/default/files/files/Prettyman_2013_PhI_MuonDeepMapping.pdf

47 Saftoiu, A., Bercuci, A., Brancus, M., Duma, M., Haungs, A., Mitrica, B., et al. (2012). Measurements of the cosmic muon flux with the WILLI detector as a source of information about solar events. Romanian Journal of Physics, 56, 664–672.

48 Shinohara H., & Tanaka H. K. M. (2012). Conduit magma convection of a rhyolitic magma: Constraints from cosmic‐ray muon radiography of Iwodake, Satsuma‐Iwojima volcano, Japan. Earth and Planetary Science Letters, 349–350, 87–97. https://doi.org/10.1016/j.epsl.2012.07.002

49 Shinohara, H., & Witter, J. (2005). Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophysical Research Letters, 32, L20308. https://doi.org/10.1029/2005GL024131

50 Shinohara, H., Aiuppa, A., Giudice, G., Gurrieri, S., & Liuzzo, M. (2008) Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy. Journal of Geophysical Research, 113, B09203. https://doi.org/10.1029/2007JB005185

51 Smart, D. F., & Shea, M. A. (1994). Geomagnetic cutoffs: a review for space dosimetry applications. Advances in Space Research, 14(10), 787–796. https://doi.org/10.1016/0273‐1177(94)90543‐6

52 Taira, H., & Tanaka, H. K. M. (2010). A potential space‐ and power‐effective muon sensor module for imaging a volcano. Earth, Planets and Space, 62, 179–186. https://doi.org/10.5047/eps.2009.06.005

53 Tanaka, H. K. M. (2007). Monte‐Carlo simulations of atmospheric muon production: Implication of the past Martian environment. Icarus, 191, 603–615. https://doi.org/10.1016/j.icarus.2007.05.014

54 Tanaka, H. K. M. (2013) Development of stroboscopic muography. Geoscientific Instrumentation, Methods and Data Systems, 2, 41–45. https://doi.org/10.5194/gi‐ 2‐41‐2013

55 Tanaka, H.K.M. (2015). Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan. Scientific Reports, 5, 8305. https://doi.org/10.1038/srep08305

56 Tanaka, H. K. M. (2016). Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography. Scientific Reports, 6, 39741. https://doi.org/10.1038/srep39741

57 Tanaka, H. K. M. (2020a). Development of the muographic tephra deposit monitoring system. Scientific Reports, 10, 14820. https://doi.org/10.1038/s41598‐020‐71902‐1

58 Tanaka, H. K. M. (2020b). Muometric positioning system (μPS) with cosmic muons as a new underwater and underground positioning technique. Scientific Reports, 10, 18896. https://doi.org/10.1038/s41598‐020‐75843‐7

59 Tanaka, H. K. M. (2020c). Development of automatic analysis and data visualization system for volcano muography. Journal of Disaster Research, 15, 2, 203–211. https://doi.org/10.20965/jdr.2020.p0203

60 Tanaka H. K. M., Kusagaya, T., & Shinohara, H. (2014). Radiographic visualization of magma dynamics in an erupting volcano. Nature Communications, 5, 3381. https://doi.org/10.1038/ncomms4381

61 Tanaka, H. K. M., Miyajima, H., Kusagaya, T., Taketa, A., Uchida, T., Tanaka, M. (2011). Cosmic muon imaging of hidden seismic fault zones: Raineater permeation into the mechanical fracture zone in Itoigawa‐Shizuoka Tectonic Line, Japan. Earth and Planetary Science Letters, 306, 156–162. https://doi.org/10.1016/j.epsl.2011.03.036

62 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., et al. (2007a). High resolution imaging in the inhomogeneous crust with cosmic‐ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan. Earth and Planetary Science Letters, 263, 104–113. https://doi.org/10.1016/j.epsl.2007.09.001

63 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., et al. (2008). Radiographic imaging below a volcanic crater floor with cosmic‐ray muons. American Journal of Science, 308, 843–850. https://doi.org/10.2475/07.2008.02

64 Tanaka, H. K. M., & Ohshiro, M. (2017). Muography. Maruzen, Tokyo, pp. 1–352.

65 Tanaka, H. K. M., & Sannomiya, A. (2012). Development and operation of a muon detection system under extremely high humidity environment for monitoring underground water table. Geoscientific Instrumentation Methods and Data Systems, 2, 719–736. https://doi.org/10.5194/gi‐2‐29‐2013

66 Tanaka H. K. M., Taira, H., Uchida, T., Tanaka, M., Takeo, M., Ohminato, T., et al. (2010). Three dimensional CAT scan of a volcano with cosmic ray muon radiography. Journal of Geophysical Research, 115, B12332. https://doi.org/10.1029/2010JB007677

67 Tanaka H. K. M., Takahashi S., Yoshida J., Ohshima H., Maekawa T., Watanabe H., & Niwa K. (2007b). Imaging the conduit size of the dome with cosmic‐ray muons: the structure beneath ShowaShinzan Lava Dome, Japan. Geophysical Research Letters, 34, L22311. https://doi.org/10.1029/2007GL031389

68 Tanaka, H. K. M., Uchida, T., Tanaka, M., Shinohara, H., & Taira, H. (2009a). Cosmic‐ray muon imaging of magma in a conduit: degassing process of Satsuma‐Iwojima Volcano, Japan. Geophysical Research Letters, 36, L01304. https://doi.org/10.1029/2008GL036451

69 Tanaka H. K. M., Uchida T., Tanaka M., Takeo M., Oikawa J., Ohminato T., et al. (2009b). Detecting a mass change inside a volcano by cosmic‐ray muon radiography (muography): first results from measurements at Asama volcano, Japan. Geophysical Research Letters, 36, L17302. https://doi.org/10.1029/2009GL039448

70 Tanaka H. K. M., & Yokoyama I. (2008). Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido – contact between high‐energy physics and volcano physics. Proceedings of the Japan Academy Series B 84, 107–116. https://doi.org/10.2183/pjab.84.107

71 Tanaka, H. K. M., & Yokoyama, I. (2013). Possible application of compact electronics for multilayer muon high‐speed radiography to volcanic cones. Geoscientific Instrumentation, Methods and Data Systems, 2, 263–273. https://doi.org/10.5194/gi‐2‐263‐2013

72 Tioukov, V., Alexandrov, A., Bozza, C., Consiglio, L., D’Ambrosio, N., De Lellis, G., et al. (2019). First muography of Stromboli volcano. Scientific Reports, 9, 6695. https://doi.org/10.1038/s41598‐019‐43131‐8

73 Urabe, B., Watanabe, N., & Murakami, M. (2006). Topographic change of the summit crater of Asama Volcano during the 2004 eruption derived from airborne synthetic aperture radar (SAR) measurements. Bulletin of Geographical Survey Institute, 53, 1–6. https://doi.org/10.18940/kazan.50.5_401

74 Viola, S., Ardid, M., Bertin, V., Enzenhöher, A., Keller, P., Lahmann, R., et al. (2013). NEMO‐SMO acoustic array: A deep‐sea test of a novel acoustic positioning system for a km3‐scale underwater neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A, 725, 207–210. https://doi.org/10.1016/j.nima.2012.11.150

75 Yamamoto, Y. (2006). Systematic variation of shear‐induced physical properties and fabrics in the Miura–Boso accretionary prism: The earliest processes during off‐scraping. Earth and Planetary Science Letters, 244, 1–2, 270–284. https://doi.org/10.1016/j.epsl.2006.01.049

76 Yuliza, E., Habil, H., Munir, M. M., Irsyam, M., Abdullah, M., & Khairurrijal (2015). Study of soil moisture sensor for landslide early warning system: Experiment in laboratory scale. Journal of Physics: Conference Series, 739, 6th Asian Physics Symposium 19–20 August 2015, Bandung, Indonesia, 012034. https://doi.org/10.1088/1742‐6596/739/1/012034

Muography

Подняться наверх