Читать книгу Phosphors for Radiation Detectors - Группа авторов - Страница 27

References

Оглавление

1 1. Röntgen, W.C. (1895). On a new kind of rays. Nature 53 (1369): 274–276.

2 2. Knoll, G. (2000). Radiation Detection and Measurement. Hoboken, NJ: Wiley.

3 3. Yukihara, E.G. and McKeever, S.W.S. (2011). Optically Stimulated Luminescence: Fundamentals and Applications. New York: Wiley.

4 4. Mckeever, S.W.S. (1985). Thermoluminescence of Solids. Cambridge: Cambridge University Press.

5 5. Schulman, J.H., Ginther, R.J., and Klick, C.C. (1951). Dosimetry of X‐rays and gamma‐rays by radiophotoluminescence. J. Appl. Phys. 22: 1479–1487.

6 6. Hofstadter, R. (1948). Alkali halide scintillation counters. Phys. Rev. 74: 100–101.

7 7. Weber, M.J. and Monchamp, R.R. (1973). Luminescence of Bi4Ge3O12: spectral and decay properties. J. Appl. Phys. 44: 5495–5499.

8 8. Laval, M., Moszyński, M., Allemand, R. et al. (1983). Barium fluoride – inorganic scintillator for subnanosecond timing. Nucl. Instrum. Meth. Phys. Res. 206: 169–176.

9 9. Jahn, A., Sommer, M., and Henniger, J. (2014). OSL efficiency for BeO OSL dosimeters. Radiat. Meas. 71: 104–107.

10 10. McElhaney, S.A., Ramsey, J.A., Bauer, M.L. et al. (1990). A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nucl. Instrum. Methods Phys. Res. A. 299: 111–114.

11 11. Yanagida, T., Fujimoto, Y., Miyamoto, M. et al. (2014). Optical and scintillation properties of Cd doped ZnO film. Jpn. J. Appl. Phys. 53: 02BC13.

12 12. Kaneko, J.H., Izaki, K., Toui, K. et al. (2016). An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities. Radiat. Meas. 93: 13–19.

13 13. Maekawa, T., Sumita, A., and Makino, S. (1998). Thin Beta‐ray detectors using plastic scintillator combined with wavelength‐shifting fibers for surface contamination monitoring. J. Nucl. Sci. Technol. 35: 886–894.

14 14. Tzolov, M.B., Barbi, N.C., Bowser, C.T. et al. (2018). First‐surface scintillator for low accelerating voltage scanning electron microscopy (SEM) imaging. Microsc. Microanal. 24: 488–496.

15 15. Tanaka, H.K.M. and Yokoyama, I. (2008). Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido – contact between high‐energy physics and volcano physics. Proc. Jpn. Acad. Ser. B. 84: 107–116.

16 16. Yanagida, T., Fujimoto, Y., Yamanoi, K. et al. (2012). Optical and scintillation properties of bulk ZnO crystal. Phys. Status Solidi C 9: 2284–2287.

17 17. Yanagida, T., Fujimoto, Y., and Koshimizu, M. (2014). Evaluation of scintillation properties of GaN, e‐J. Surf. Sci. Nanotechnol. 12: 396–399.

18 18. Yanagida, T., Okada, G., Kato, T. et al. (2016). Fast and high light yield scintillation in Ga2O3 semiconductor material. Appl. Phys. Exp. 9: 042601‐1‐042601‐4.

19 19. Shendrik, R.Y., Radzhabov, A., and Nepomnyashchikh, A.I. (2013). Scintillation properties of SrF2 and SrF2‐Ce3+ crystals. Tech. Phys. Lett. 39: 587–590.

20 20. Mikhailik, V.B., Kraus, H., Imber, J. et al. (2006). Scintillation properties of pure CaF2. Nucl. Instrum. Methods Phys. Res. A. 566: 522–525.

21 21. Itoh, M. and Kamada, M. (2001). Comparative study of auger‐free luminescence and valence‐band photoemission in wide‐gap materials. J. Phys. Soc. Japan 70: 3446–3451.

22 22. Yanagida, T., Kawaguchi, N., Fujimoto, Y. et al. (2010). Growth and scintillation properties of BaMgF4. Nucl. Instrum. Methods Phys. Res. A. 621: 473–477.

23 23. Moszynski, M., Allemand, R., Odru, M.L.R. et al. (1983). Recent progress in fast timing with CsF scintillators in application to time‐of‐flight positron tomography in medicine. Nucl. Instrum. Methods Phys. Res. Sect. A. 205: 239–249.

24 24. Yahaba, N., Koshimizu, M., Yan, S. et al. (2014). X‐ray detection capability of a Cs2ZnCl4 single‐crystal scintillator. Appl. Phys. Exp. 7: 062602‐1‐062602‐4.

25 25. Schotanus, P., van Eijk, C.W.E., Hollander, R.W. et al. (1985). Temperature dependence of BaF2 scintillation light yield. Nucl. Instrum. Methods Phys. Res. A. 238: 564–565.

26 26. Yanagida, T., Fujimoto, Y., Koshimizu, M. et al. (2015). Scintillation properties of CdF2 crystal. J. Lumin. 157: 293–296.

27 27. Anderson, D.F. (1989). Properties of the high‐density scintillator cerium fluoride. IEEE Trans. Nucl. Sci. 36: 137–140.

28 28. García‐Toraño, E., Caro, B., Peyrés, V. et al. (2016). Characterization of a CeBr3 detector and application to the measurement of some materials from steelworks. Nucl. Instrum. Methods Phys. Res. A. 837: 63–68.

29 29. Arai, M., Fujimoto, Y., Koshimizu, M. et al. (2020). Scintillation and photoluminescence properties of (Tl1−xAx)MgCl3 (where a = alkali metal). J. Alloys Compds 823: 153871.

30 30. Fujimoto, Y., Koshimizu, M., Yanagida, T. et al. (2016). Thallium magnesium chloride: a high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X‐ray and gamma‐ray detection. Jpn. J. Appl. Phys. 55: 090301‐1‐090301‐3.

31 31. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic and single crystal. Ceram. Int. 42: 5617–5622.

32 32. Futami, Y., Yanagida, T., and Fujimoto, Y. (2014). Optical, dosimetric, and scintillation properties of pure sapphire crystals. Jpn. J. Appl. Phys 53: 02BC12.

33 33. Haas, J.T.M.d. and Dorenbos, P. (2008). Advances in yield calibration of scintillators. IEEE Trans. Nucl. Sci. 55: 1086–1092.

34 34. Masai, H., Yamada, Y., Okumura, S. et al. (2015). Photoluminescence of monovalent indium centres in phosphate glass. Sci. Rep. 5: 13646.

35 35. Masai, H., Yanagida, T., Fujimoto, Y. et al. (2012). Scintillation property of rare earth‐free SnO‐doped oxide glass. Appl. Phys. Lett. 101: 191906.

36 36. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic doped with Mn2+. J. Ceram. Soc. Jpn. 124: 559–563.

37 37. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO translucent ceramic doped with Cr3+. Opt. Mater. 54: 134–138.

38 38. Grabmaier, B.C., Rossner, W., Berthold, T. et al. (eds.) (1996). Inorganic Scintillators and their Application, 29–35. Delft University Press.

39 39. Seferis, I., Michail, C., Valais, I. et al. (2014). Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X‐ray radiography conditions: comparison with Gd2O2S:Eu. J. Lumin. 151: 229–234.

40 40. Melcher, C.L. and Schweitzer, J.S. (1992). Cerium‐doped lutetium oxyorthosilicate – a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39: 502–505.

41 41. Pidol, L., Kahn‐Harari, A., Viana, B. et al. (2004). High efficiency of lutetium silicate scintillators, Ce‐doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 51: 1084, 1087.

42 42. Kamada, K., Endo, T., Tsutumi, K. et al. (2011). Composition engineering in cerium‐doped (Lu,Gd)3(Ga,Al)5O12 single‐crystal scintillators. Cryst. Growth Des. 11: 4484–4490.

43 43. Yanagida, T., Itoh, T., Takahashi, H. et al. (2007). Improvement of ceramic YAG(Ce) scintillators to (YGd)3Al5O12(Ce) for gamma‐ray detectors. Nucl. Instrum. Methods Phys. Res. A. 579: 23–26.

44 44. Baryshevsky, V.G., Korzhik, M.V., Moroz, V.I. et al. (1991). YAlO3 – Ce‐fast‐acting scintillators for detection of ionizing‐radiation. Nucl. Instrum. Methods A 58: 291–293.

45 45. van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E. et al. (2002). Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high‐energy‐resolution scintillators. Nucl. Instrum. Methods A 486: 254–258.

46 46. Combes, C.M., Dorenbos, P., van Eijk, C.W.E. et al. (1999). Optical and scintillation properties of pure and Ce3+‐doped Cs2LiYCl6 and Li3YCl6: Ce3+ crystals. J. Lumin. 82: 299–305.

47 47. Ogino, H., Yoshikawa, A., and Nikl, M. (2006). Scintillation characteristics of Pr‐doped Lu3Al5O12 single crystals. J. Cryst. Growth 292: 239–242.

48 48. Yanagida, T., Watanabe, K., Okada, G. et al. (2018). Optical, scintillation and radiation tolerance properties of Pr‐doped pyrosilicate crystals. Jpn. J. Appl. Phys. 57: 106401.

49 49. Yanagida, T., Kamada, K., Fujimoto, Y. et al. (2010). Growth and scintillation properties of Pr doped YAP with different Pr concentrations. Nucl. Instrum. Methods A 623: 1020–1023.

50 50. Dorenbos, P., van Eijk, C.W.E., Hollander, R.W. et al. (1990). Scintillation properties of Nd3+ doped LaF3 crystals. IEEE Trans. Nucl. Sci. 37: 119–123.

51 51. Sturm, B.W., Cherepy N.J., Drury, O.B. et al. (2011) Characteristics of undoped and europium‐doped SrI2 scintillator detectors. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (SS/MIC 2011), 7

52 52. Shimizu, Y., Minowa, M., Suganuma, W. et al. (2006). Dark matter search experiment with CaF2(Eu) scintillator at Kamioka Observatory. Phys. Lett. B. 633: 195–200.

53 53. Murray, R.B. (1958). Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl. Instrum. Methods 2: 237–248.

54 54. Yanagida, T., Kawaguchi, N., and Fujimoto, Y. (2011). Basic study of Europium doped LiCaAlF6 scintillator and its capability for thermal neutron imaging application. Opt. Mater. 33: 1243–1247.

55 55. Okada, G., Ueda, J., Tanabe, S. et al. (2014). Samarium‐doped oxyfluoride glass‐ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron. J. Am. Ceram. Soc. 97: 2147–2153.

56 56. Robbins, D.J. (1980). On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127: 2694–2702.

57 57. Lempicki, A. and Wojtowicz, A.J. (1994). Fundamental limitations of scintillators. J. Lumin. 60 and 61: 942–947.

58 58. Mikhailik, V.B. and Kraus, H. (2010). Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi B 247: 1583–1599.

59 59. Dorenbos, P. (2002). Light output and energy resolution of Ce3+‐doped scintillators. Nucl. Instrum. Methods Phys. Res. A 486: 208–213.

60 60. Alekhin, M.S., de Haas, J.T.M., Khodyuk, I.V. et al. (2013). Improvement of γ‐ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co‐doping. Appl. Phys. Lett. 102: 161915.

61 61. Stand, L., Zhuravleva, M., Lindsey, A. et al. (2013) Potassium Strontium Iodide: A New High Light Yield Scintillator with 2.4% Energy Resolution, 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), conference record

62 62. Moszyński, M., Zalipska, J., Balcerzyk, M. et al. (2002). Intrinsic energy resolution of NaI(Tl). Nucl. Instrum. Methods Phys. Res. A. 484: 459–469.

63 63. van Loef, E.V.D., Dorenbos, P., Kramer, K. et al. (2001). Scintillation properties of LaCl3: Ce3+ crystals: fast, efficient, and high‐energy resolution scintillators. IEEE Trans. Nucl. Sci. 48: 341–345.

64 64. Kelley, G.G., Bell, P.R., Davis, R.C. et al. (1956). Intrinsic scintillator resolution. IRE Trans. Nucl. Sci. 3: 57–58.

65 65. Syntfeld‐Kazuch, A., Swiderski, L., Czarnacki, W. et al. (2006). Non‐proportionality and Energy Resolution of CsI(Tl). IEEE Nuclear Science Symposium Conference Record 2006: N30–N134.

66 66. Chewpraditkula, W. and Moszynski, M. (2011). Scintillation properties of Lu3Al5O12, Lu2SiO5 and LaBr3 crystals activated with cerium. Phys. Proc. 22: 218–226.

67 67. Uchiyama, Y., Kouda, M., Tanihata, C. et al. (2001). Study of energy response of Gd2SiO5:Ce3+ scintillator for the ASTRO‐E hard X‐ray detector. IEEE Trans. Nucl. Sci. 48: 379–384.

68 68. Dorenbos, P. (2010). Fundamental limitations in the performance of Ce3+‐, Pr3+‐, and Eu2+‐activated scintillators. IEEE Trans. Nucl. Sci. 57: 1162–1167.

69 69. Gundacker, S., Turtos, R.M., Kratochwil, N. et al. (2020). Experimental time resolution limits of modern SiPMs and TOF‐PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 65: 1–20.

70 70. Matsuzawa, T., Aoki, Y., Takeuchi, T. et al. (1996). A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143: 2670–2673.

71 71. Nesshi‐Tedaldi, F., Dissertori, G., Lecomte, P. et al. (2009). Studies of Cerium floride, LYSO and lead tungstate crystals expose to high hadron fluences, IEEE NSS MIC 2009 Conference record N32‐3

72 72. Grescovich, G., Cusano, D., Hoffman, D. et al. (1992). Ceramic scintillators for advanced, medical X‐ray‐detectors. Am. Ceram. Soc. Bull. 71: 1120–1130.

73 73. Tanaka, M., Hara, K., Kim, S. et al. (2002). Applications of cerium‐doped gadolinium silicate Gd2SiO5:Ce scintillator to calorimeters in high‐radiation environment. Nucl. Instrum. Methods Phys. Res. A. 404: 283–294.

74 74. Kawade, K., Fukatsu, K., Itow, Y. et al. (2011). Study of radiation hardness of Gd2SiO5 scintillator for heavy ion beam. JINST 6: 1–12.

75 75. Yanagida, T., Fujimoto, Y., and Watanabe, K. (2014). Dopant concentration ependence on radiation induced positive hysteresis of Ce:GSO and Ce:GSOZ. Radiat. Meas. 61C: 16–20.

76 76. Yanagida, T., Fujimoto, Y., Koshimizu, M. et al. (2014). Positive hysteresis of Ce‐doped GAGG scintillator. Opt. Mater. 36: 2016–2019.

77 77. Yanagida, T., Fujimoto, Y., Yamaji, A. et al. (2013). Study of the correlation of scintillation decay and emission wavelength. Radiat. Meas. 55: 99–102.

78 78. Melcher, C.L., Manente, R.A., and Schweitzer, J.S. (1989). Applicability of barium fluoride and cadmium tungstate scintillators for well logging. IEEE Trans. Nucl. Sci. 36: 1188–1192.

79 79. Kitis, G., Gomez‐Ros, J.M., and Tuyn, J.W.N. (1998). Thermoluminescence glow‐curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 31: 2636–2641.

80 80. Chen, R. and Winer, S.A.A. (1970). Effects of various heating rates on glow curves. J. Appl. Phys. 41: 5227–5232.

81 81. Bos, A.J.J. (2007). Theory of thermoluminescence. Radiat. Meas. 41: S45–S56.

82 82. Yanagida, T., Okada, G., and Kawaguchi, N. (2019). Ionizing‐radiation‐induced storage‐luminescence for dosimetric applications. J. Lumin. 207: 14–21.

83 83. Grimmeis, H.G. and Ledebo, L.‐A. (1974). Photo‐ionization of deep impurity levels in semiconductors with non‐parabolic bands. J. Phys. C Sol. Stat. Phys. 8: 2615–2626.

84 84. Grimmeis, H.G. and Ledebo, L.‐A. (1975). Spectral distribution of photoionization cross sections by photoconductivity measurements. J. Appl. Phys. 46: 2155.

85 85. Lucovsky, G. (1965). On the photoionization of deep impurity centers in semiconductors. Solid State Commun. 3: 299–302.

86 86. Yanagida, T., Fujimoto, Y., Watanabe, K. et al. (2014). Scintillation and optical stimulated luminescence of Ce doped CaF2. Radiat. Meas. 71: 162–165.

87 87. Yanagida, T. (2016). Ionizing radiation induced emission: scintillation and storage‐type luminescence. J. Lumin. 169: 544–548.

88 88. Yanagida, T. (2018). Inorganic scintillating materials and scintillation detectors. Proc. Japan Acad. B. 94: 75–97.

89 89. Yanagida, T., Kamada, K., Fujimoto, Y. et al. (2011). Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators. Nucl. Instrum. Methods A 631: 54–57.

90 90. Kawaguchi, N., Yanagida, T., Fujimoto, Y. et al. (2013). Neutron detection with LiCaAlF6 scintillator doped with 3d‐transition metal ions. Radiat. Meas. 55: 128–131.

91 91. Blankespoor, S.C., Derenzo, S.E., Moses, W.W. et al. (1994). Characterization of a pulsed X‐ray source for fluorescent lifetime measurements. IEEE Trans. Nucl. Sci. 41: 698–702.

92 92. Derenzo, S.E., Weber, M.J., Moses, W.W. et al. (2000). Measurements of the intrinsic rise times of common inorganic scintillators. IEEE Trans. Nucl. Sci. IEEE 47: 860–864.

93 93. Yanagida, T., Fujimoto, Y., Yoshikawa, A. et al. (2010). Development and performance test of picosecond pulse X‐ray excited streak camera system for scintillator characterization. Appl. Phys. Express 2: 056202.

94 94. Yanagida, T., Fujimoto, Y., Ito, T. et al. (2014). Development of X‐ray induced afterglow characterization system. Appl. Phys. Express 7: 062401.

95 95. Wróbel, D., Bilski, P., Marczewska, B. et al. (2015). Characterization of the Risø TL/OSL DA‐20 reader for application in TL dosimetry. Radiat. Meas. 74: 1–5.

96 96. Bos, A.J.J., Winkelman, A.J.M., Le Masson, N.J.M. et al. (2002). A TL/OSL emission spectrometer extension of the Risø reader, Radiat. Prot. Dosimetry 101: 111–114.

Phosphors for Radiation Detectors

Подняться наверх