Читать книгу The Wiley-Blackwell Handbook of Childhood Social Development - Группа авторов - Страница 67

References

Оглавление

1 Ackerly, S. (1950). Prefrontal lobes and social development. Yale Journal of Biology and Medicine, 22(6), 471–482.

2 [a] Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.

3 [b] Al‐Ezzi, A., Kamel, N., Faye, I., & Gunaseli, E. (2020). Review of EEG, ERP, and brain connectivity estimators as predictive biomarkers of social anxiety disorder. Frontiers in Psychology, 11, 730.

4 Araujo, G. C., Antonini, T. N., Anderson, V., Vannatta, K. A., Salley, C. G., Bigler, E. D., Taylor, G., Gerhardt, C., Rubin, K., Dennis, M., Lo, W., Mackay, M. T., Gordon, A., Hajek Koterba, C., Gomes, A., Greenham, M., & Yeates, K. O. (2017). Profiles of executive function across children with distinct brain disorders: traumatic brain injury, stroke, and brain tumor. Journal of the International Neuropsychological Society, 23(7), 529–538.

5 Auday, E. S., & Pérez‐Edgar, K. E. (2019). Limbic and prefrontal neural volume modulate social anxiety in children at temperamental risk. Depression & Anxiety, 36(8), 690–700.

6 Bakker, D. J. (1984). The brain as a dependent variable. Journal of Clinical Neuropsychology, 6(1), 1–16.

7 Bassett, D. S., & Bullmore, E. T. (2017). Small‐world brain networks revisited. Neuroscientist, 23(5), 499–516.

8 [c] Bertolero, M., & Bassett, D. S. (2019). How the mind emerges from the brain’s complex networks. Scientific American, 321(1), 28–33.

9 Bigler, E. D. (1999). Neuroimaging in pediatric traumatic head injury: Diagnostic considerations and relationships to neurobehavioral outcome. Journal of Head Trauma Rehabilitation, 14(4), 406–423.

10 Bigler, E. D. (2017). Structural neuroimaging in neuropsychology: History and contemporary applications. Neuropsychology, 31(8), 934–953.

11 Bigler, E. D. (2021). Charting brain development in graphs, diagrams and figures from childhood, adolescence to early adulthood: Neuroimaging implications for neuropsychology. Journal of Pediatric Neuropsychology, 7(1–2), 27–54.

12 Bigler, E. D., Yeates, K. O., Gerhardt, C. A., Vannatta, K., Dennis, M., Rubin, K. H., Stancin, T., & Taylor, G. H. (2013). Neuroimaging and social behavior in children after traumatic brain injury: Findings from the Social Outcomes of Brain Injury in Kids (SOBIK) study. NeuroRehabilitation, 32(4), 707–720.

13 [d] Bilek, E., Itz, M. L., Stossel, G., Ma, R., Berhe, O., Clement, L., Clement, L., Zang, Z., Robnik, L., Plichta, M. M., Neukel, C., Schmahl, C., Kirsch, P., Meyer‐Lindenberg, A., & Tost, H. (2019). Deficient amygdala habituation to threatening stimuli in borderline personality disorder relates to adverse childhood experiences. Biological Psychiatry, 86(12), 930–938.

14 Blinkov, S. M., & Glezer, I. L. (1968). The human brain in figures and tables: A quantitative handbook. Basic Books.

15 Cattelani, R., Lombardi, F., Brianti, R., & Mazzucchi, A. (1998). Traumatic brain injury in childhood: Intellectual, behavioural and social outcome into adulthood. Brain Injury, 12(4), 283–296.

16 Chini, M., & Hanganu‐Opatz, I. L. (2021). Prefrontal cortex development in health and disease: Lessons from rodents and humans. Trends in Neuroscience, 44(3), 227–240.

17 Cipolla, M. J. (2009). The cerebral circulation. Morgan & Claypool Life Sciences.

18 Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, S., & Press, G. A. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216(3), 672–682.

19 Davison, A. N., & Dobbing, J. (1966). Myelination as a vulnerable period in brain development. British Medical Bulletin, 22(1), 40–44.

20 [e] Decety, J. (2020). The social brain: A developmental perspective. MIT Press.

21 Dufford, A. J., Kim, P., & Evans, G. W. (2020). The impact of childhood poverty on brain health: Emerging evidence from neuroimaging across the lifespan. International Review of Neurobiology, 150, 77–105.

22 [f] Engel, M. L., & Gunnar, M. R. (2020). The development of stress reactivity and regulation during human development. International Review of Neurobiology, 150, 41–76.

23 Ernhart, C. B. (1991). Clinical correlations between ethanol intake and fetal alcohol syndrome. Recent Developments in Alcoholism, 9, 127–150.

24 Eskenazi, B., Gaylord, L., Bracken, M. B., & Brown, D. (1988). In utero exposure to organic solvents and human neurodevelopment. Developmental Medicine and Child Neurology, 30(4), 492–501.

25 [g] Eslinger, P. J., & Biddle, K. R. (2000). Adolescent neuropsychological development after early right prefrontal cortex damage. Developmental Neuropsychology, 18(3), 297–329.

26 Flensborg‐Madsen, T., Falgreen Eriksen, H. L., & Mortensen, E. L. (2020). Early life predictors of intelligence in young adulthood and middle age. PLoS One, 15(1), e0228144.

27 [h] Gazzaniga, M. S. (1985). The social brain: Discovering the networks of the mind. Basic Books.

28 Geschwind, N. (1975). The borderland of neurology and psychiatry: Some common misconceptions. In D. Blumer & D. F. Benson (Eds.), Psychiatric aspects of neurologic disease (Vol. 1, pp. 1–8). Grune & Stratton.

29 Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience, 19(3), 123–137.

30 [i] Goetschius, L. G., Hein, T. C., McLanahan, S. S., Brooks‐Gunn, J., McLoyd, V. C., Dotterer, H. L., Lope, D., Mitchell, C., Hyde, L. W., Monk, C. S., & Beltz, A. M. (2020). Association of childhood violence exposure with adolescent neural network density. JAMA Network Open, 3(9), e2017850.

31 Goyal, M. S., Venkatesh, S., Milbrandt, J., Gordon, J. I., & Raichle, M. E. (2015). Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences USA, 112(46), 14105–14112.

32 [j] Graziano, R. C., Bruce, S. E., Paul, R. H., Korgaonkar, M. S., & Williams, L. M. (2019). The effects of bullying in depression on white matter integrity. Behavioural Brain Research, 363, 149–154.

33 Grossman, S. P. (1967). A textbook of physiological psychology. Wiley.

34 Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of orbitofrontal function: Current themes and future directions. Brain and Cognition, 55(1), 1–10.

35 Hein, T. C., & Monk, C. S. (2017). Research review: Neural response to threat in children, adolescents, and adults after child maltreatment –a quantitative meta‐analysis. Journal of Child Psychology & Psychiatry, 58(3), 222–230.

36 Herschkowitz, N., & Rossi, E. (1971). Critical periods in brain development. In: Lipids, malnutrition & the developing brain. Ciba Foundation Symposium, 107–119.

37  [k] Heverly‐Fitt, S., Rubin, K. H., Dennis, M., Taylor, H. G., Stancin, T., Gerhardt, C. A., Vannatta, K., Bigler, E. D., & Yeates, K. O. (2016). Investigating a proposed model of social competence in children with traumatic brain injuries. Journal of Pediatric Psychology, 41(2), 235–243.

38 Holtmaat, A., & Svoboda, K. (2009). Experience‐dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10(9), 647–658.

39 Huang, H., Shu, N., Mishra, V., Jeon, T., Chalak, L., Wang, Z. J., Rollins, N., Gong, G., Cheng, H., Peng, Y., Dong, Q., & He, Y. (2015). Development of human brain structural networks through infancy and childhood. Cerebral Cortex, 25(5), 1389–1404.

40 Insel, T. R., & Landis, S. C. (2013). Twenty‐five years of progress: The view from NIMH and NINDS. Neuron, 80(3), 561–567.

41 [l] Jacobs, R., & Anderson, V. (2002). Planning and problem solving skills following focal frontal brain lesions in childhood: Analysis using the Tower of London. Child Neuropsychology, 8(2), 93–106.

42 Janusz, J. A., Kirkwood, M. W., Yeates, K. O., & Taylor, H. G. (2002). Social problem‐solving skills in children with traumatic brain injury: Long‐term outcomes and prediction of social competence. Child Neuropsychology, 8(3), 179–194.

43 Jones, J. Y., Selvaraj, B., & Ho, M. L. (2020). Pediatric functional neuroimaging: Practical tips and pearls. American Journal of Roentgenology, 214(5), 995–1007.

44 Juruena, M. F., Eror, F., Cleare, A. J., & Young, A. H. (2020). The role of early life stress in HPA axis and anxiety. Advances in Experimental Medicine and Biology, 1191, 141–153.

45 Keenan, H. T., Clark, A. E., Holubkov, R., Cox, C. S., & Ewing‐Cobbs, L. (2018). Psychosocial and executive function recovery trajectories one year after pediatric traumatic brain injury: The influence of age and injury severity. Journal of Neurotrauma, 35(2), 286–296.

46 [m] Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Science, 16(11), 559–572.

47 [n] Kim, Y. K., & Yoon, H. K. (2018). Common and distinct brain networks underlying panic and social anxiety disorders. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 80(Pt B), 115–122.

48 [o] Kishida, K. T., & Montague, P. R. (2012). Imaging models of valuation during social interaction in humans. Biological Psychiatry, 72(2), 93–100.

49 Laffel, L. (1999). Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Research & Reviews, 15(6), 412–426.

50 Lansford, J. E., Godwin, J., McMahon, R. J., Crowley, M., Pettit, G. S., Bates, J. E., Coie, J. D., & Dodge, K. A. (2021). Early physical abuse and adult outcomes. Pediatrics, 147(1), e20200873.

51 Lebel, C., Treit, S., & Beaulieu, C. (2019). A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR in Biomedicine, 32(4), e3778.

52 Lemerise, E. A., & Arsenio, W. F. (2000). An integrated model of emotion processes and cognition in social information processing. Child Development, 71(1), 107–118.

53 [p] Li, T., Chen, X., Li, S., Jiang, Y., Feng, C., Wang, L., Camilleri, J. A., Eickhoff, S. B., & Stewart, J. L. (2020). Mapping common grey matter volume deviation across child and adolescent psychiatric disorders. Neuroscience and Biobehavioral Reviews, 115, 273–284.

54 [q] Lindsey, H. M., Wilde, E. A., Caeyenberghs, K., & Dennis, E. L. (2019). Longitudinal neuroimaging in pediatric traumatic brain injury: Current state and consideration of factors that influence recovery. Frontiers in Neurology, 10, 1296.

55 [r] Luby, J. L., Tillman, R., & Barch, D. M. (2019). Association of timing of adverse childhood experiences and caregiver support with regionally specific brain development in adolescents. JAMA Network Open, 2(9), e1911426.

56 Mah, A., Geeraert, B., & Lebel, C. (2017). Detailing neuroanatomical development in late childhood and early adolescence using NODDI. PLoS One, 12(8), e0182340.

57  [s] McClure, E. B., Monk, C. S., Nelson, E. E., Parrish, J. M., Adler, A., Blair, R. J., Fromm, S., Charney, D. S., Leibenluft, E., Ernst, M., & Pine, D. S. (2007). Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Archives of General Psychiatry, 64(1), 97–106.

58 McDermott, C. L., Seidlitz, J., Nadig, A., Liu, S., Clasen, L. S., Blumenthal, J. D., Reardon, P. K., Lalonde, F., Patel, R., Chakravarty, M., Lerch, J., & Raznahan, A. (2019). Longitudinally mapping childhood socioeconomic status associations with cortical and subcortical morphology. Journal of Neuroscience, 39(8), 1365–1373.

59 McKenna, M. C., Scafidi, S., & Robertson, C. L. (2015). Metabolic alterations in developing brain after injury: Knowns and unknowns. Neurochemical Research, 40(12), 2527–2543.

60 Micheva, K. D., Weinberg, R. J., & Smith, S. J. (2020). A synapse census for the ages. Science, 369(6501), 253–254.

61 Moreno, E., Fernandez‐Marrero, Y., Meyer, P., & Rhiner, C. (2015). Brain regeneration in Drosophila involves comparison of neuronal fitness. Current Biology, 25(7), 955–963.

62 Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Schramm, C., Hennig, P., Wissler, H., & Helmstaedter, M. (2019). Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science, 366(6469). doi: 10.1126/science.aay3134

63 [t] Muhlberger, A., Wieser, M. J., Gerdes, A. B., Frey, M. C., Weyers, P., & Pauli, P. (2011). Stop looking angry and smile, please: Start and stop of the very same facial expression differentially activate threat‐ and reward‐related brain networks. Social Cognitive and Affective Neuroscience, 6(3), 321–329.

64 [u] Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., Lainhart, J. E., & Anderson, J. S. (2014). Abnormal lateralization of functional connectivity between language and default mode regions in autism. Molecular Autism, 5(1), 8.

65 Noack, H., Nolte, L., Nieratschker, V., Habel, U., & Derntl, B. (2019). Imaging stress: An overview of stress induction methods in the MR scanner. Journal of Neural Transmission (Vienna), 126(9), 1187–1202.

66 [v] Parkes, L., Satterthwaite, T. D., & Bassett, D. S. (2020). Towards precise resting‐state fMRI biomarkers in psychiatry: Synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Current Opinion in Neurobiology, 65, 120–128.

67 Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887.

68 Pujol, J., Soriano‐Mas, C., Ortiz, H., Sebastian‐Galles, N., Losilla, J. M., & Deus, J. (2006). Myelination of language‐related areas in the developing brain. Neurology, 66(3), 339–343.

69 Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.

70 Rakic, P. (1978). Neuronal migration and contact guidance in the primate telencephalon. Postgraduate Medical Journal, 54 Suppl 1, 25–40.

71 [w] Redcay, E., & Warnell, K. R. (2018). A social‐interactive neuroscience approach to understanding the developing brain. Advances in Child Development and Behavior, 54, 1–44.

72 Root, A. E., Wimsatt, M., Rubin, K. H., Bigler, E. D., Dennis, M., Gerhardt, C. A., Stancin, T., Taylor, H. G., Vannatta, K., & Yeates, K. O. (2016). Children with traumatic brain injury: Associations between parenting and social adjustment. Journal of Applied Developmental Psychology, 42, 1–7. doi:10.1016/j.appdev.2015.10.002

73 Rubin, K. H., Coplan, R. J., & Bowker, J. C. (2009). Social withdrawal in childhood. Annual Review of Psychology, 60, 141–171.

74 [x] Ryan, N. P., Anderson, V. A., Bigler, E. D., Dennis, M., Taylor, H. G., Rubin, K. H., Vannatta, K., Gerhardt, C. A., Stancin, T., Beauchamp, M. H., Hearps, S., Catroppa, C., & Yeates, K. O. (2021). Delineating the nature and correlates of social dysfunction after childhood traumatic brain injury using common data elements: Evidence from an international multi‐cohort study. Journal of Neurotrauma, 38(2), 252–260

75 [y] Salokangas, R. K. R., Hietala, J., Armio, R. L., Laurikainen, H., From, T., Borgwardt, S., Riecher‐Rössler, A., Brambilla, P., Bonivento, C., Meisenzahl, E., Schultze‐Lutter, F., Haidl, T., Ruhrmann, S., Upthegrove, R., Wood, S. J., Pantelis, C., Kambeitz‐Ilankovic, L., Ruef, A., Dwyer, D. B., … & Koutsouleris, N. (2021). Effect of childhood physical abuse on social anxiety is mediated via reduced frontal lobe and amygdala‐hippocampus complex volume in adult clinical high‐risk subjects. Schizophrenia Research, 227, 101–109.

76 [z] Sato, W., & Uono, S. (2019). The atypical social brain network in autism: Advances in structural and functional MRI studies. Current Opinion in Neurology, 32(4), 617–621.

77 [aa] Schilbach, L., Eickhoff, S. B., Rotarska‐Jagiela, A., Fink, G. R., & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious and Cognition, 17(2), 457–467.

78 bb Schurz, M., Maliske, L., & Kanske, P. (2020). Cross‐network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex, 130, 142–157.

79 Somerville, L. H. (2016). Searching for signatures of brain maturity: What are we searching for? Neuron, 92(6), 1164–1167.

80 Steiner, P. (2019). Brain fuel utilization in the developing brain. Annals of Nutrition & Metabolism, 75 Suppl 1, 8–18.

81 Sudre, G., Choudhuri, S., Szekely, E., Bonner, T., Goduni, E., Sharp, W., & Shaw, P. (2017). Estimating the heritability of structural and functional brain connectivity in families affected by Attention‐Deficit/Hyperactivity Disorder. JAMA Psychiatry, 74(1), 76–84.

82 Szilagyi, A., Zachar, I., Fedor, A., de Vladar, H. P., & Szathmary, E. (2016). Breeding novel solutions in the brain: A model of Darwinian neurodynamics. F1000Research, 5, 2416.

83 Tamnes, C. K., Roalf, D. R., Goddings, A. L., & Lebel, C. (2018). Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress. Developmental Cognitive Neuroscience, 33, 161–175.

84 [cc] Tompson, S., Falk, E. B., Vettel, J. M., & Bassett, D. S. (2018). Network approaches to understand individual differences in brain connectivity: Opportunities for personality neuroscience. Personality Neuroscience, 1. E5.

85 [dd] Tompson, S. H., Kahn, A. E., Falk, E. B., Vettel, J. M., & Bassett, D. S. (2020). Functional brain network architecture supporting the learning of social networks in humans. Neuroimage, 210, 116498.

86 Towbin, A. (1978). Cerebral dysfunction related to perinatal organic damage: clinical–neuropathologic correlations. Journal of Abnormal Psychology, 87(6), 617–635.

87 Turesky, T. K., Vanderauwera, J., & Gaab, N. (2020). Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life. Developmental Cognitive Neuroscience, 47, 100893.

88 Tymofiyeva, O., Hess, C. P., Ziv, E., Lee, P. N., Glass, H. C., Ferriero, D. M., Barkovich, A. J., & Xu, D. (2013). A DTI‐based template‐free cortical connectome study of brain maturation. PLoS One, 8(5), e63310.

89 Tymofiyeva, O., Zhou, V. X., Lee, C. M., Xu, D., Hess, C. P., & Yang, T. T. (2020). MRI insights into adolescent neurocircuitry: A vision for the future. Frontiers in Human Neuroscience, 14, 237.

90 [ee] Wilde E. A., Merkley T. L., Lindsey H. M., Bigler E. D., Hunter, J. V., Ewing‐Cobbs, L., Aitken, M. E., MacLeod, M. C., Hanten G., Chu, Z. D., Abildskov T. J., Noble‐Hausslein, L. J., & Levin, H. S. (2021). Developmental alterations in cortical organization and socialization in adolescents who sustained a traumatic brain injury in early childhood. Journal of Neurotrauma, 38(1), 133–143.

91  [ff] Wong, T. Y., Sid, A., Wensing, T., Eickhoff, S. B., Habel, U., Gur, R. C., & Nickl‐Jockschat, T. (2019). Neural networks of aggression: ALE meta‐analyses on trait and elicited aggression. Brain Structure & Function, 224(1), 133–148.

92 Wymbs, N. F., Orr, C., Albaugh, M. D., Althoff, R. R., O’Loughlin, K., Holbrook, H., Garavan, H., Montalvo‐Ortiz, J. L., Mostofsky, S., Hudiak, J., & Kaufman, J. (2020). Social supports moderate the effects of child adversity on neural correlates of threat processing. Child Abuse & Neglect, 102, 104413.

93 Xie, H., Karipidis, II, Howell, A., Schreier, M., Sheau, K. E., Manchanda, M. K., Ayub, R., Glover, G. H., Jung, M., Reiss A. L., & Saggar, M. (2020). Finding the neural correlates of collaboration using a three‐person fMRI hyperscanning paradigm. Proceedings of the National Academy of Sciences USA, 117(37), 23066–23072.

94 Yeates, K. O., Bigler, E. D., Dennis, M., Gerhardt, C. A., Rubin, K. H., Stancin, T., Taylor, H. G., & Vannatta, K. (2007). Social outcomes in childhood brain disorder: A heuristic integration of social neuroscience and developmental psychology. Psychological Bulletin, 133(3), 535–556.

95 [gg] Young, D. A., Neylan, T. C., Chao, L. L., O’Donovan, A., Metzler, T. J., & Inslicht, S. S. (2019). Child abuse interacts with hippocampal and corpus callosum volume on psychophysiological response to startling auditory stimuli in a sample of veterans. Journal of Psychiatric Research, 111, 16–23.

The Wiley-Blackwell Handbook of Childhood Social Development

Подняться наверх