Читать книгу Drug Transporters - Группа авторов - Страница 138

REFERENCES

Оглавление

1 [1] Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci (2013); 38 (3):151–159.

2 [2] Bush K, Nagle M, Truong D, Bhatnagar V, Kaler G, Eraly S, Wu W, Nigam S. Drug transporters: molecular characterization and role in drug Disposition; 2014.

3 [3] Nigam SK. What do drug transporters really do? Nat Rev Drug Discov 2015; 14 (1):29–44.

4 [4] Nigam SK, Bush KT, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat Clin Pract Nephrol 2007; 3 (8):443–448.

5 [5] Eraly SA, Monte JC, Nigam SK. Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics 2004; 18 (1):12–24.

6 [6] Wu W, Baker ME, Eraly SA, Bush KT, Nigam SK. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species‐specific amplification of subsets of family members. Physiol Genomics 2009; 38 (2):116–124.

7 [7] Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34 (2–3):413–435.

8 [8] Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 2013; 34 (2–3):95–107.

9 [9] Engelhart DC, Granados JC, Shi D, Saier Jr MH, Baker ME, Abagyan R, Nigam SK. Systems biology analysis reveals eight SLC22 transporter subgroups, including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21 (5):1791.

10 [10] Nigam SK, Bush KT, Martovetsky G, Ahn S‐Y, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95 (1):83–123.

11 [11] Nigam SK, Bush KT, Bhatnagar V, Poloyac SM, MomperJD. The systems biology of drug metabolizing enzymes and transporters: relevance to quantitative systems pharmacology. Clin Pharmacol Ther 2020; 108 (1):40–53.

12 [12] Zhang J, Wang H, Fan Y, Yu Z, You G. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647.

13 [13] Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 2008; 38 (7–8):889–935.

14 [14] Sun W, Wu RR, van Poelje PD, Erion MD. Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 2001; 283 (2):417–422.

15 [15] Shin HJ, Anzai N, Enomoto A, He X, Kim DK, Endou H, Kanai Y. Novel liver‐specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 2007; 45 (4):1046–1055.

16 [16] Schömig E, Spitzenberger F, Engelhardt M, Martel F, Ording N, Gründemann D. Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett 1998; 425 (1):79–86.

17 [17] Yokoyama H, Anzai N, Ljubojevic M, Ohtsu N, Sakata T, Miyazaki H, Nonoguchi H, Islam R, Onozato ML, Tojo A, Tomita K, Kanai Y, Igarashi T, Sabolic I, Endou H. Functional and immunochemical characterization of a novel organic anion transporter Oat8 (Slc22a9) in rat renal collecting duct. Cell Physiol Biochem 2008; 21 (4):269–278.

18 [18] Tsuchida H, Anzai N, Shin HJ, Wempe MF, Jutabha P, Enomoto A, Cha SH, Satoh T, Ishida M, Sakurai H, Endou H. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem 2010; 25 (4–5):511–522.

19 [19] Nishiwaki T, Daigo Y, Tamari M, Fujii Y, Nakamura Y. Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic‐cation transporters. Cytogenet Cell Genet 1998; 83 (3–4):251–255.

20 [20] Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, Burckhardt BC, Sabolic I, Burckhardt G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem 2008; 283 (24):16332–16341.

21 [21] Mori K, Ogawa Y, Ebihara K, Aoki T, Tamura N, Sugawara A, Kuwahara T, Ozaki S, Mukoyama M, Tashiro K, Tanaka I, Nakao K. Kidney‐specific expression of a novel mouse organic cation transporter‐like protein. FEBS Lett 1997; 417 (3):371–374.

22 [22] Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417 (6887):447–452.

23 [23] Burckhardt G, Burckhardt BC. in vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. In: Fromm MF, Kim RB, editor. Drug Transporters. Berlin Heidelberg: Springer; 2011. p 29–104.

24 [24] VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 2010; 31 (1):1–71.

25 [25] Nigam SK. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu Rev Pharmacol Toxicol 2018; 58 (1):663–687.

26 [26] Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier Jr MH, Wu W, Nigam SK. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure‐function implications and analysis of sequence motifs. PLoS One 2015; 10 (11):e0140569.

27 [27] Lee W, Ha J‐m, Sugiyama Y. Post‐translational regulation of the major drug transporters in the families of organic anion transporters and organic anion–transporting polypeptides. J Biol Chem 2020; 295 (50):17349–17364.

28 [28] Simonson G, Vincent A, Roberg K, Huang Y, Iwanij V. Molecular cloning and characterization of a novel liver‐specific transport protein. J Cell Sci 1994; 107 (4):1065–1072.

29 [29] Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endou H. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett 1998; 429 (2):179–182.

30 [30] Lopez‐Nieto CE. 1996. NKT cDNA sequence, GenBank Accession Number: MMU52842, submitted March 27, 1996.

31 [31] Lopez‐Nieto CE, You G, Barros EJG, Beier DR, Nigam SK. Molecular cloning and characterization of a novel transport protein with very high expression in the kidney (Abstract). J Am Soc Nephrol 1996; 7:1301.

32 [32] Lopez‐Nieto CE, You G, Bush K.T, Barros EJ, Beier DR, Nigam SK. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 1997; 272 (10):6471–6478.

33 [33] Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 1997; 272 (30):18526–18529.

34 [34] Sweet DH, Wolff NA, Pritchard JB. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J Biol Chem 1997; 272 (48):30088–30095.

35 [35] Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu AS, Nigam SK. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 2000; 278 (4):F635–F643.

36 [36] Ahn SY, Eraly SA, Tsigelny I, Nigam SK. Interaction of organic cations with organic anion transporters. J Biol Chem 2009; 284 (45):31422–31430.

37 [37] Ahn SY, Jamshidi N, Mo ML, Wu W, Eraly SA, Dnyanmote A, Bush KT, Gallegos TF, Sweet DH, Palsson BO, Nigam SK. Linkage of organic anion transporter‐1 to metabolic pathways through integrated “omics”‐driven network and functional analysis. J Biol Chem 2011; 286 (36):31522–31531.

38 [38] Vallon V, Eraly SA, Rao SR, Gerasimova M, Rose M, Nagle M, Anzai N, Smith T, Sharma K, Nigam SK, Rieg T. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol 2012; 302 (10):F1293–F1299.

39 [39] Nigam AK, Li JG, Lall K, Shi D, Bush KT, Bhatnagar V, Abagyan R, Nigam SK. Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning. J Biol Chem 2020; 295 (7):1829–1842.

40 [40] Brady KP, Dushkin H, Fornzler D, Koike T, Magner F, Her H, Gullans S, Segre GV, Green RM, Beier DR. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 1999; 56 (3):254–261.

41 [41] Kusuhara H, Sekine T, Utsunomiya‐Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 1999; 274 (19):13675–13680.

42 [42] Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999; 255 (2):508–514.

43 [43] Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 2000; 275 (6):4507–4512.

44 [44] Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 2004; 287 (2):F236–F244.

45 [45] Monte JC, Nagle MA, Eraly SA, Nigam SK. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun 2004; 323 (2):429–436.

46 [46] Wang L, Sweet DH. Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J 2013; 15 (1):53–69.

47 [47] Jacobsson JA, Haitina T, Lindblom J, Fredriksson R. Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 2007; 90 (5):595–609.

48 [48] Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76 (3):481–490.

49 [49] Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65 (3):479–487.

50 [50] Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun 2003; 300 (2):333–342.

51 [51] Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol 2011; 79 (5):795–805.

52 [52] Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacol Ther 2012; 136 (1):106–130.

53 [53] Mundhey DA, Sapkal NP, Daud AS. Simultaneous quantification of buprenorphine HCl and naloxone HCl by vierordt's method. Int J Pharm Pharm Sci 2016; 8 (1):101–107.

54 [54] Dantzler WH, Wright SH. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Biochim Biophys Acta 2003; 1618 (2):185–193.

55 [55] Pritchard JB, Miller DS. Renal secretion of organic anions and cations. Kidney Int 1996; 49 (6):1649–1654.

56 [56] Vriend J, Hoogstraten CA, Venrooij KR, van den Berge BT, Govers LP, van Rooij A, Huigen MC, Schirris TJ, Russel FG, Masereeuw R. Organic anion transporters 1 and 3 influence cellular energy metabolism in renal proximal tubule cells. Biol Chem 2019; 400 (10):1347–1358.

57 [57] Zhou F, You G. Molecular insights into the structure‐function relationship of organic anion transporters OATs. Pharm Res 2007; 24 (1):28–36.

58 [58] Feng B, Dresser MJ, Shu Y, Johns SJ, Giacomini KM. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 2001; 40 (18):5511–5520.

59 [59] Astorga B, Wunz TM, Morales M, Wright SH, Pelis RM. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am J Physiol Renal Physiol 2011; 301 (2):F378–F386.

60 [60] Perry JL, Dembla‐Rajpal N, Hall LA, Pritchard JB. A three‐dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport. J Biol Chem 2006; 281 (49):38071–38079.

61 [61] Tsigelny IF, Kovalskyy D, Kouznetsova VL, Balinskyi O, Sharikov Y, Bhatnagar V, Nigam SK. Conformational changes of the multispecific transporter organic anion transporter 1 (OAT1/SLC22A6) suggests a molecular mechanism for initial stages of drug and metabolite transport. Cell Biochem Biophys 2011; 61 (2):251–259.

62 [62] Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M, Wu W, Eraly SA, Nigam SK. Olfactory mucosa‐expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun 2006; 351 (4):872–876.

63 [63] Nigam SK, Bhatnagar V. How much do we know about drug handling by SLC and ABC drug transporters in children? Clin Pharmacol Ther 2013; 94 (1):27–29.

64 [64] Sweet DH, Eraly SA, Vaughn DA, Bush KT, Nigam SK. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int 2006; 69 (5):837–845.

65 [65] Sweeney DE, Vallon V, Rieg T, Wu W, Gallegos TF, Nigam SK. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol Pharmacol 2011; 80 (1):147–154.

66 [66] Momper JD, Yang J, Gockenbach M, Vaida F, Nigam SK. Dynamics of organic anion transporter‐mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol 2019; 14 (4):540–548.

67 [67] Momper JD, Nigam SK. Developmental regulation of kidney and liver solute carrier and ATP‐binding cassette drug transporters and drug metabolizing enzymes: the role of remote organ communication. Expert Opin Drug Metab Toxicol 2018; 14 (6):561–570.

68 [68] Yacovino LL, Aleksunes LM. Renal efflux transporter expression in pregnant mice with Type I diabetes. Toxicol Lett 2012; 211 (3):304–311.

69 [69] Wegner W, Burckhardt BC, Burckhardt G, Henjakovic M. Male‐dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PLoS One 2012; 7 (4):e35556.

70 [70] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628 (1–3):1–5.

71 [71] Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 “drug” transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One 2012; 7 (7):e40796.

72 [72] Martovetsky G, Bush KT, Nigam SK. Kidney versus liver specification of SLC and ABC drug transporters, tight junction molecules, and biomarkers. Drug Metab Dispos 2016; 44 (7):1050–1060.

73 [73] Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug‐metabolizing enzymes and drug transporters. Mol Pharmacol 2013; 84 (6):808–823.

74 [74] Marable SS, Chung E, Park J‐S. Hnf4a is required for the development of Cdh6‐expressing progenitors into proximal tubules in the mouse kidney. J Am Soc Nephrol 2020; 31 (11):2543–2558.

75 [75] Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, Leblond FA, Pichette V. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos 2011; 39 (8):1363–1369.

76 [76] Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non‐renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17 (5):515–542.

77 [77] Di Giusto G, Anzai N, Ruiz ML, Endou H, Torres AM. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride. Arch Toxicol 2009; 83 (10):887–897.

78 [78] Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther 2010; 125 (1):79–91.

79 [79] Lin CC, Fan HY, Kuo CW, Pao LH. Evaluation of chinese‐herbal‐medicine‐induced herb‐drug interactions: focusing on organic anion transporter 1. Evid Based Complement Alternat Med 2012; 2012:967182.

80 [80] Zhang Q, Suh W, Pan Z, You G. Short‐term and long‐term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3. Int J Biochem Mol Biol 2012; 3 (2):242–249.

81 [81] Li S, Zhang Q, You G. Three ubiquitination sites of organic anion transporter‐1 synergistically mediate protein kinase C‐dependent endocytosis of the transporter. Mol Pharmacol 2013; 84 (1):139–146.

82 [82] Xu D, Wang H, You G. An essential role of Nedd4‐2 in the ubiquitination, expression, and function of organic anion transporter‐3. Mol Pharm 2016; 13 (2):621–630.

83 [83] Duan G, Walther D. The roles of post‐translational modifications in the context of protein interaction networks. PLoS Comput Biol 2015; 11 (2):e1004049.

84 [84] Spoel SH. Orchestrating the proteome with post‐translational modifications. J Exp Bot 2018; 69 (19):4499–4503.

85 [85] Xu D, Wang H, You G. Posttranslational regulation of organic anion transporters by ubiquitination: known and novel. Med Res Rev 2016; 36 (5):964–979.

86 [86] Duan P, You G. Short‐term regulation of organic anion transporters. Pharmacol Ther 2010; 125 (1):55–61.

87 [87] Xu D, You G. Loops and layers of post‐translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37–44.

88 [88] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695 (1–3):55–72.

89 [89] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81:203–229.

90 [90] Zhang Q, Hong M, Duan P, Pan Z, Ma J, You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C‐regulated trafficking through a dynamin‐ and clathrin‐dependent pathway. J Biol Chem 2008; 283 (47):32570–32579.

91 [91] Xu D, Wang H, Zhang Q, You G. Nedd4‐2 but not Nedd4‐1 is critical for protein kinase C‐regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 310 (9):F821–F831.

92 [92] Xu D, Wang H, Gardner C, Pan Z, Zhang PL, Zhang J, You G. The role of Nedd4‐1 WW domains in binding and regulating human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 311 (2):F320–F329.

93 [93] Xu D, Zhang J, Zhang Q, Fan Y, Liu C, You G. PKC/Nedd4‐2 signaling pathway regulates the cell surface expression of drug transporter hOAT1. Drug Metab Dispos 2017; 45 (8):887–895.

94 [94] Wang H, You G. SGK1/Nedd4‐2 signaling pathway regulates the activity of human organic anion transporters 3. Biopharm Drug Dispos 2017; 38 (8):449–457.

95 [95] Wang H, Xu D, Toh MF, Pao AC, You G. Serum‐ and glucocorticoid‐inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4‐2. Biochem Pharmacol 2016; 102:120–129.

96 [96] Xu D, Huang H, Toh MF, You G. Serum‐ and glucocorticoid‐inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter. Int J Biochem Mol Biol 2016; 7 (1):19–26.

97 [97] Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta 2004; 1695 (1–3):189–207.

98 [98] Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10 (8):550–563.

99 [99] Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of ubiquitin‐proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016; 8:303.

100 [100] Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2018; 9 (9):754–769.

101 [101] Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF‐kappaB pathway. Am J Transl Res 2018; 10 (3):881–891.

102 [102] Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns (GEP) 2006; 6 (3):277–284.

103 [103] Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY‐1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 2016; 63 (1):146–155.

104 [104] Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbe S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93 (3):1289–1315.

105 [105] Coyne ES, Wing SS. The business of deubiquitination ‐ location, location, location. F1000Res 2016; 5:163.

106 [106] Zhang J, Liu C, You G. Ubiquitin‐specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1. Biochim Biophys Acta Gen Subj 2020;1864 (12):129701.

107 [107] Hunter T, Sun H. Crosstalk Between the SUMO and Ubiquitin Pathways. In: Jentsch S, Haendler B, editors. The Ubiquitin System in Health and Disease. Ernst Schering Foundation Symposium Proceedings. Volume 2008/1, Berlin, Heidelberg: Springer; 2008. doi: https://doi.org/10.1007/2789_2008_098.

108 [108] Wang H, Zhang J, You G. Activation of protein kinase A stimulates SUMOylation, expression, and transport activity of organic anion transporter 3. AAPS J 2019; 21 (2):30.

109 [109] Duan P, Li S, You G. Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter. Eur J Pharmacol 2010; 627 (1–3):49–55.

110 [110] Li S, Duan P, You G. Regulation of human organic anion transporter 1 by ANG II: involvement of protein kinase Calpha. Am J Physiol Endocrinol Metab 2009; 296 (2):E378–E383.

111 [111] Zhang J, Liu C, You G, AG490, a JAK2‐specific inhibitor, downregulates the expression and activity of organic anion transporter‐3. J Pharmacol Sci 2018; 136 (3):142–148.

112 [112] Wang H, Liu C, You G. The activity of organic anion transporter‐3: role of dexamethasone. J Pharmacol Sci 2018; 136 (2):79–85.

113 [113] Wang H, Zhang J, You G. The mechanistic links between insulin and human organic anion transporter 4. Int J Pharm 2019; 555:165–174.

114 [114] Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M. Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev 2012; 64 (3):421–449.

115 [115] Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, Nigam SK. Analysis of three‐dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem 2011; 286 (1):243–251.

116 [116] Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 2007; 293 (4):F1332–F1341.

117 [117] Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 2008; 294 (4):F867–F873.

118 [118] Vanwert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 2008; 74 (1):122–131.

119 [119] Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury‐induced kidney injury. J Biol Chem 2011; 286 (30):26391–26395.

120 [120] Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res 2011; 10 (6):2842–2851.

121 [121] Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep 2017; 7 (1):1–9.

122 [122] Eraly SA, Vallon V, Rieg T, Gangoiti JA, Wikoff WR, Siuzdak G, Barshop BA, Nigam SK. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics 2008; 33 (2):180–192.

123 [123] Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X, Bhatnagar V, Lewis NE, Nigam SK. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem 2021; 296:100575.

124 [124] Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock‐out mice. J Biol Chem 2006; 281 (8):5072–5083.

125 [125] Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol (2008); 19 (9):1732–1740.

126 [126] Nagle MA, Wu W, Eraly SA, Nigam SK. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 2013; 534:133–138.

127 [127] Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi‐level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem 2008; 283 (13):8654–8663.

128 [128] VanWert AL, Sweet DH. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res 2008; 25 (2):453–462.

129 [129] Granados JC, Nigam AK, Bush KT, Jamshidi N, Nigam SK. A key role for the transporter OAT1 in systemic lipid metabolism. J Biol Chem 2021; 296:100603.

130 [130] Duan P, Li S, Ai N, Hu L, Welsh WJ, You G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol Pharm 2012; 9 (11):3340–3346.

131 [131] Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, Nigam SK. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem 2007; 282 (33):23841–23853.

132 [132] Kouznetsova VL, Tsigelny IF, Nagle MA, Nigam SK. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter‐organic anion transporter1 (Oat1). Bioorg Med Chem 2011; 19 (11):3320–3340.

133 [133] Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, Balac N, Rodriguez P, Abagyan R, Nigam SK. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine‐learning approach. J Pharmacol Exp Ther 2016; 359 (1):215–229.

134 [134] Lai RE, Jay CE, Sweet DH. Organic solute carrier 22 (SLC22) family: potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26 (2):S45–S60.

135 [135] An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (oat1)–mediated transport. Drug Metab Dispos 2014; 42 (9):1357–1366.

136 [136] Wang X, Morris ME. Diet/nutrient interactions with drug transporters. In: You G, Morris ME, editors. Drug Transporters: Molecular Characterization and Role in Drug Disposition. Wiley; 2014. p 409–432.

137 [137] Wang L, Sweet DH. Interaction of natural dietary and herbal anionic compounds and flavonoids with human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid Based Complement Alternat Med 2013; 2013:612527. doi: https://doi.org/10.1155/2013/612527.

138 [138] Huo X, Meng Q, Wang C, Wu J, Zhu Y, Sun P, Ma X, Sun H, Liu K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: protective effect of Apigenin against imipenem‐induced nephrotoxicity. Phytother Res 2020; 34 (11):2998–3010.

139 [139] Kang YJ, Lee CH, Park S‐J, Lee HS, Choi M‐K, Song I‐S. Involvement of organic anion transporters in the pharmacokinetics and drug interaction of rosmarinic acid. Pharmaceutics 2021; 13 (1):83.

140 [140] Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (−)‐Epigallocatechin‐3‐gallate inhibits human and rat renal organic anion transporters. ACS Omega 2021; 6 (6):4347–4354.

141 [141] Li C, Wang X, Bi Y, Yu H, Wei J, Zhang Y, Han L, Zhang Y. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol Sci 2020; 175 (2):279–291.

142 [142] Wu W, Jamshidi N, Eraly SA, Liu HC, Bush KT, Palsson BO, Nigam SK. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos 2013; 41 (10):1825–1834.

143 [143] McAdams‐DeMarco MA, Maynard JW, Baer AN, Kao LW, Kottgen A, Coresh J. A urate gene‐by‐diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis 2013; 72 (5):701–706.

144 [144] Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A, Sluijter J, Torano JS, Zaal EA, Berkers CR. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome‐derived organic anion secretion. Proc Natl Acad Sci 2019; 116 (32):16105–16110.

145 [145] Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 2015; 43 (10):1522–1535.

146 [146] Fan Y, Liang Z, Zhang J, You G. Oral proteasomal inhibitors ixazomib, oprozomib, and delanzomib upregulate the function of organic anion transporter 3 (OAT3): implications in OAT3‐mediated drug‐drug interactions. Pharmaceutics 2021; 13 (3):314.

147 [147] Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 2007; 104 (6):1777–1782.

148 [148] Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY, Bhatnagar V, Wu W, Bush KT, Abagyan R, Palsson BO. An organic anion transporter 1 (OAT1)‐centered metabolic network. J Biol Chem 2016; 291 (37):19474–19486.

149 [149] Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez GAP, Aurich MK. Recon3D enables a three‐dimensional view of gene variation in human metabolism. Nat Biotechnol 2018; 36 (3):272.

150 [150] Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, Kinchen JM, Coelho A, Zur AA, Mertsch K. Metabolomic and genome‐wide association studies reveal potential endogenous biomarkers for OATP1B1. Clin Pharmacol Ther 2016; 100 (5):524–536.

151 [151] Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver–kidney axis. J Biol Chem 2017; 292 (38):15789–15803.

152 [152] Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15 (5):301–316.

153 [153] Bush KT, Singh P, Nigam SK. Gut‐derived uremic toxin handling in vivo requires OAT‐mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5 (7):e133817.

154 [154] Lowenstein J, Nigam SK. Uremic toxins in organ crosstalk. Front Med 2021; 8:457.

155 [155] Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol 2012; 7:99–122.

156 [156] Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc 2017; 6 (2):e005022.

157 [157] Naud J, Nolin TD, Leblond FA, Pichette V. Current understanding of drug disposition in kidney disease. J Clin Pharmacol 2012; 52 (1 Suppl):10S–22S.

158 [158] Brandoni A, Hazelhoff MH, Bulacio RP, Torres AM. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis. World J Gastroenterol 2012; 18 (44):6387–6397.

159 [159] Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hypertens 2018; 27 (4):305.

160 [160] Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19 (6):358–371.

161 [161] Mount DB. The kidney in hyperuricemia and gout. Curr Opin Nephrol Hypertens (2013); 22 (2):216–223.

162 [162] Anzai N, Jutabha P, Amonpatumrat‐Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome‐wide association studies. Clin Exp Nephrol 2012; 16 (1):89–95.

163 [163] Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, Maihofer AX, Nigam SK. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J 2016; 9 (3):444–453.

164 [164] Bischoff A, Bucher M, Gekle M, Sauvant C. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3. Physiol Rep 2014; 2 (2):e00243.

165 [165] Lowenstein J, Grantham JJ. The rebirth of interest in renal tubular function. Am J Physiol Renal Physiol 2016; 310 (11):F1351–F1355.

166 [166] Schneider R, Meusel M, Betz B, Held C, Möller‐Ehrlich K, Büttner‐Herold M, Wanner C, Gekle M, Sauvant C. Oat1/3 restoration protects against renal damage after ischemic AKI. Am J Physiol Renal Physiol 2015; 308 (3):F198–F208.

167 [167] Saigo C, Nomura Y, Yamamoto Y, Sagata M, Matsunaga R, Jono H, Nishi K, Saito H. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des Devel Ther 2014; 8:1073–1082.

168 [168] Saito H, Yoshimura M, Saigo C, Komori M, Nomura Y, Yamamoto Y, Sagata M, Wakida A, Chuman E, Nishi K, Jono H. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol Sci 2014; 141 (1):206–217.

169 [169] Bischoff A, Bucher M, Gekle M, Sauvant C. Differential effect of COX1 and COX2 inhibitors on renal outcomes following ischemic acute kidney injury. Am J Nephrol 2014; 40 (1):1–11.

170 [170] Preising C, Schneider R, Bucher M, Gekle M, Sauvant C. Regulation of expression of renal organic anion transporters OAT1 and OAT3 in a model of ischemia/reperfusion injury. Cell Physiol Biochem 2015; 37 (1):1–13.

171 [171] Pannu N, Nadim MK. An overview of drug‐induced acute kidney injury. Crit Care Med 2008; 36 (4 Suppl):S216–S223.

172 [172] Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 1999; 31 (4):971–997.

173 [173] Guo X, Meng Q, Liu Q, Wang C, Sun H, Peng J, Ma X, Kaku T, Liu K. JBP485 improves gentamicin‐induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats. Toxicol Appl Pharmacol 2013; 271 (2):285–295.

174 [174] Jia Y, Liu Z, Wang C, Meng Q, Huo X, Liu Q, Sun H, Sun P, Yang X, Ma X, Liu K. P‐gp, MRP2 and OAT1/OAT3 mediate the drug‐drug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 2016; 306:27–35.

175 [175] Schwenk MH, Pai AB. Drug transporter function‐‐implications in CKD. Adv Chronic Kidney Dis 2016; 23 (2):76–81.

176 [176] Huo X, Liu K. Renal organic anion transporters in drug‐drug interactions and diseases. Eur J Pharm Sci 2018; 112:8–19.

177 [177] Masereeuw R, Mutsaers HA, Toyohara T, Abe T, Jhawar S, Sweet DH, Lowenstein J. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 2014; 34 (2):191–208.

178 [178] Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, Cropp CD, Choi JH, Singh D, Tahara H, Stocker SL, Huang Y, Brett CM, Giacomini KM. Reduced renal clearance of cefotaxime in asians with a low‐frequency polymorphism of OAT3 (SLC22A8), J Pharm Sci 2013; 102 (9):3451–3457.

179 [179] Lozano E, Briz O, Macias RI, Serrano MA, Marin JJ, Herraez E. Genetic heterogeneity of SLC22 family of transporters in drug disposition. J Pers Med 2018; 8 (2):14.

180 [180] Sakurai Y, Motohashi H, Ogasawara K, Terada T, Masuda S, Katsura T, Mori N, Matsuura M, Doi T, Fukatsu A, Inui K. Pharmacokinetic significance of renal OAT3 (SLC22A8) for anionic drug elimination in patients with mesangial proliferative glomerulonephritis. Pharm Res 2005; 22 (12):2016–2022.

181 [181] Iacobucci I, Lonetti A, Candoni A, Sazzini M, Papayannidis C, Formica S, Ottaviani E, Ferrari A, Michelutti A, Simeone E, Astolfi A, Abbenante MC, Parisi S, Cattina F, Malagola M, Russo D, Damiani D, Gherlinzoni F, Gottardi M, Baccarani M, Fanin R, Martinelli G. Profiling of drug‐metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab‐Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharmacogenomics J 2012; 13 (4):335–341.

182 [182] Engstrom K, Ameer S, Bernaudat L, Drasch G, Baeuml J, Skerfving S, Bose‐O'Reilly S, Broberg K. Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environ Health Perspect 2012; 121 (1):85–91.

183 [183] Sun CY, Wu MS, Lee CC, Chen SH, Lo KC, Chen YH. A novel SNP in the 5′ regulatory region of organic anion transporter 1 is associated with chronic kidney disease. Sci Rep 2018; 8 (1):8085.

184 [184] Cho SK, Kim S, Chung JY, Jee SH. Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1. BMJ Open 2015; 5 (11):e009360.

185 [185] Urquhart BL, Kim RB. Blood‐brain barrier transporters and response to CNS‐active drugs. Eur J Clin Pharmacol 2009; 65 (11):1063–1070.

186 [186] Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Hosokawa M, Schuetz JD, Sugiyama Y. Limited brain distribution of [3R,4R,5S]‐4‐acetamido‐5‐amino‐3‐(1‐ethylpropoxy)‐1‐cyclohexene‐1‐carboxyl ate phosphate (Ro 64‐0802), a pharmacologically active form of oseltamivir, by active efflux across the blood‐brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance‐associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 2009; 37 (2):315–321.

187 [187] Miyajima M, Kusuhara H, Fujishima M, Adachi Y, Sugiyama Y. Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood‐brain barrier in mice. Drug Metab Dispos 2011; 39 (5):814–819.

188 [188] Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 2004; 43 (8):487–514.

189 [189] Zhou F, Illsley NP, You G. Functional characterization of a human organic anion transporter hOAT4 in placental BeWo cells. Eur J Pharm Sci 2006; 27 (5):518–523.

190 [190] Schnabolk GW, Youngblood GL, Sweet DH. Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). Am J Physiol Renal Physiol 2006; 291 (2):F314–F321.

191 [191] Li W, Mei X, Tu YY. Effects of tea polyphenols and their polymers on MAPK signaling pathways in cancer research. Mini Rev Med Chem 2012; 12 (2):120–126.

192 [192] Taleb O, Maammar M, Brumaru D, Bourguignon JJ, Schmitt M, Klein C, Kemmel V, Maitre M, Mensah‐Nyagan AG. Xanthurenic acid binds to neuronal G‐protein‐coupled receptors that secondarily activate cationic channels in the cell line NCB‐20. PLoS One 2012; 7 (11):e48553.

193 [193] Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A, Sluijter J, Sastre Torano J, Zaal EA, Berkers CR, Esser D, Wichers HJ, van Ede K, van Duursen M, Burtey S, Verhaar MC, Meijers B, Masereeuw R. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome‐derived organic anion secretion. Proc Natl Acad Sci U S A 2019; 116 (32):16105–16110.

194 [194] Duan P, Li S, You G. Regulation of human organic anion transporter 4 by parathyroid hormone‐related protein and protein kinase A. Int J Biochem Mol Biol 2012; 3 (3):322–327.

195 [195] Phatchawan A, Chutima S, Varanuj C, Anusorn L. Decreased renal organic anion transporter 3 expression in type 1 diabetic rats. Am J Med Sci 2014; 347 (3):221–227.

196 [196] Rosenthal SB, Bush KT, Nigam SK. A network of SLC and ABC transporter and DME genes involved in remote sensing and signaling in the gut‐liver‐kidney axis. Sci Rep 2019; 9 (1):1–19.

197 [197] Chahine S, Campos A, O'Donnell MJ. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster. J Exp Biol 2012; 215 (Pt 15):2601–2610.

198 [198] Chahine S, Seabrooke S, O'Donnell MJ. Effects of genetic knock‐down of organic anion transporter genes on secretion of fluorescent organic ions by Malpighian tubules of Drosophila melanogaster. Arch Insect Biochem Physiol 2012; 81 (4):228–240.

199 [199] Masereeuw R, Russel FG. Regulatory pathways for ATP‐binding cassette transport proteins in kidney proximal tubules. Aaps J 2012; 14 (4):883–894.

Drug Transporters

Подняться наверх