Читать книгу Magnetic Resonance Microscopy - Группа авторов - Страница 72
References
Оглавление1 1 Buller, M.and Karis, J.P. (2017). Introduction of a dedicated emergency department MR imaging scanner at the Barrow Neurological Institute. American Journal of Neuroradiology 38 (8): 1480–1485.
2 2 Redd, V., Levin, S., Toerper, M.et al. (2015). Effects of fully accessible magnetic resonance imaging in the emergency department. Academic Emergency Medicine 22 (6): 741–749.
3 3 Sanchez, Y., Yun, B.J., Prabhakar, A.M.et al. (2017). Magnetic resonance imaging utilization in an emergency department observation unit. The Western Journal of Emergency Medicine 18 (5): 780–784.
4 4 Manna, S., Voutsinas, N., Maron, S.Z.et al. (2020). Leveraging IR’s adaptability during COVID-19: A multicenter single urban health system experience. Journal of Vascular and Interventional Radiology 31 (7): 1192–1194.
5 5 Jacobi, A., Chung, M., Bernheim, A.et al. (2020). Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clinical Imaging 64: 35–42.
6 6 Chung, M., Bernheim, A., Mei, X.et al. (2020). CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295 (1): 202–207.
7 7 El Homsi, M., Chung, M., Bernheim, A.et al. (2020). Review of chest CT manifestations of COVID-19 infection. European Journal of Radiology Open 7: 100239.
8 8 Smith, M.J., Hayward, S.A., Innes, S.M.et al. (2020). Point-of-care lung ultrasound in patients with COVID-19 – A narrative review. Anaesthesia 75: 1096–1104.
9 9 Kandemirli, S.G., Dogan, L., Sarikaya, Z.T.et al. (2020). Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 297: 201697.
10 10 Ogbole, G.I., Adeyomoye, A.O., Badu-Peprah, A.et al. (2018). Survey of magnetic resonance imaging availability in West Africa. The Pan African Medical Journal 30: 240.
11 11 Geethanath, S.and Vaughan, J.T., Jr. (2019). Accessible magnetic resonance imaging: A review. Journal of Magnetic Resonance Imaging 49 (7): e65–e77.
12 12 Lazaro, P., Beerra, A., Luengo, S.et al. (1994). Health care expenditures and expensive medical technology; the paradox of low-income countries. Annual Meeting International Society of Technology Assessment in Health Care, Baltimore USA.
13 13 Saslow, E. (2019). “Out here, it’s just me”: In the medical desert of rural America, one doctor for 11,000 square miles. The Washington Post 28 September.
14 14 panel discussion (2019). ISMRM Workshop on Accessible MRI. New Delhi, India.
15 15 Wald, L.L., McDaniel, P.C., Witzel, T.et al. (2020). Low-cost and portable MRI. Journal of Magnetic Resonance Imaging 52 (3): 686–696.
16 16 Nakagomi, M., Kajiwara, M., Matsuzaki, J.et al. (2019). Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2T permanent magnet. Journal of Magnetic Resonance 304: 1–6.
17 17 Coffey, A.M., Truong, M.L., and Chekmenev, E.Y. (2013). Low-field MRI can be more sensitive than high-field MRI. Journal of Magnetic Resonance 237: 169–174.
18 18 Marques, J.P., Simonis, F.F.J., Webb, A.G., and Low-field, M.R.I. (2019). An MR physics perspective. Journal of Magnetic Resonance Imaging 49 (6): 1528–1542.
19 19 O’Reilly, T.and Webb, A. (2019). Deconstructing and reconstructing MRI hardware. Journal of Magnetic Resonance 306: 134–138.
20 20 Cooley, C.Z., McDaniel, P.C., Stockmann, J.P.et al. (2021). A portable scanner for magnetic resonance imaging of the brain. Nature Biomedical Engineering 5 (3): 229–239.
21 21 Cooley, C.Z., Stockmann, J.P., Armstrong, B.D.et al. (2014). 2D imaging in a lightweight portable MRI scanner without gradient coils. Proceedings of the ISMRM Annual Meeting, Milan, Italy.
22 22 Cooley, C.Z., Stockmann, J.P., Armstrong, B.D.et al. (2015). Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magnetic Resonance in Medicine 73 (2): 872–883.
23 23 Blumler, P. (2016). Proposal for a permanent magnet system with a constant gradient mechanically adjustable in direction and strength. Concepts in Magnetic Resonance. Part B, Magnetic Resonance Engineering 46 (1): 41–48.
24 24 Ren, Z.H., Maréchal, L., Luo, W.et al. (2015). Magnet array for a portable magnetic resonance imaging system. 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, Taiwan.
25 25 Ren, Z.H., Obruchkov, S., Lu, D.W.et al. (2017). A low-field portable magnetic resonance imaging system for head imaging. 2017 Progress in Electromagnetics Research Symposium – Fall (PIERS – FALL), Singapore.
26 26 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). The MR cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magnetic Resonance in Medicine in press 82 (5): 1946–1950.
27 27 Vogel, M.W., Giorni, A., Vegh, V.et al. (2016). Rotatable small permanent magnet array for ultra-low field nuclear magnetic resonance instrumentation: A concept study. PLoS ONE 11 (6): e0157040.
28 28 Runge, V.M.and Heverhagen, J.T. (2020). The next generation- advanced design low-field MR systems. Siemens Magnetom Flash Special Issue: Head-to-toe Imaging: 11–19.
29 29 Mohr, C. (2002). The Siemens ultra high-field program MAGNETOM Allegra and Trio 3T MR: The next dimension in clinical and research MR systems. Siemens Magnetom Flash 1: 21–22.
30 30 Foo, T., Vermilyea, M., Xu, M.et al. (2016). Dedicated high-performance, lightweight, low-cryogen compact 3.0T MRI system for advanced brain imaging. Proceedings of the ISMRM, Singapore.
31 31 Campbell-Washburn, A.E., Ramasawmy, R., Restivo, M.C.et al. (2019). Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293 (2): 384–393.
32 32 Panther, A., Thevathasan, G., Connell, I.et al. (2019). A dedicated head-only MRI scanner for point-of-care imaging. Proceeding of the ISMRM, Montreal.
33 33 Stainsby, J., Bindseil, G., Connell, I.et al. (2019). Imaging at 0.5T with high-performance system components. Proceeding of the ISMRM, Montreal, 1194.
34 34 Stainsby, J., Harris, C., Bindseil, G.et al. High-performance diffusion imaging on a 0,5T system. Proceedings of the ISMRM, Montreal.
35 35 Vaughan, J., Wang, B., Idiyatullin, D.et al. (2016). Progress toward a portable MRI system for human brain imaging. Proceedings of the ISMRM, Singapore.
36 36 Sheth, K.N., Mazurek, M.H., Yuen, M.M.et al. (2020). Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurology 78 (1): 41–47.
37 37 Welch, B., By, S., Chen, G.et al. (2020). Use environments and clinical feasibility of portable point-of-care bedside brain MRI. Proceedings of the ISMRM, virtual.
38 38 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). Numerically optimized design for a low-cost, lightweight 86 mT whole-brain magnet. Proceeding of the ISMRM, Montreal, Canada.
39 39 Blumler, P.and Casanova, F. (2016). Hardware developments: Halbach magnet arrays. In: Mobile NMR and MRI; Developments and Applications (eds. M. Johns, E.O. Findjonson, S. Vogt, and A. Haber), 133–155. Cambridge, UK: Royal Society of Chemistry.
40 40 Brown, M.C., Verganelakis, D.A., Mallett, M.J.et al. (2004). Surface normal imaging with a hand-held NMR device. Journal of Magnetic Resonance 169 (2): 308–312.
41 41 Danieli, E.and Blumich, B. (2013). Single-sided magnetic resonance profiling in biological and materials science. Journal of Magnetic Resonance 229: 142–154.
42 42 Van Landeghem, M., Danieli, E., Perlo, J.et al. (2012). Low-gradient single-sided NMR sensor for one-shot profiling of human skin. Journal of Magnetic Resonance 215: 74–84.
43 43 Backhouse, L., Dias, M., Gorce, J.P.et al. (2004). GARField magnetic resonance profiling of the ingress of model skin-care product ingredients into human skin in vitro. Journal of Pharmaceutical Sciences 93 (9): 2274–2283.
44 44 Greer, M., Chen, C., and Mandal, S. (2019). An easily reproducible, hand-held, single-sided, MRI sensor. Journal of Magnetic Resonance 308: 106591.
45 45 Ali, T.S., Tourell, M.C., Hugo, H.J.et al. (2019). Transverse relaxation-based assessment of mammographic density and breast tissue composition by single-sided portable NMR. Magnetic Resonance in Medicine 82 (3): 1199–1213.
46 46 Tourell, M.C., Ali, T.S., Hugo, H.J.et al. (2018). T1-based sensing of mammographic density using single-sided portable NMR. Magnetic Resonance in Medicine 80 (3): 1243–1251.
47 47 Colucci, L.A., Corapi, K.M., Li, M.et al. (2019). Fluid assessment in dialysis patients by point-of-care magnetic relaxometry. Science Translational Medicine 11 (502).
48 48 Li, M., Vassiliou, C.C., Colucci, L.A.et al. (2015). (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice. NMR in Biomedicine 28 (8): 1031–1039.
49 49 Perlo, J., Casanova, F., and Blumich, B. (2004). 3D imaging with a single-sided sensor: An open tomograph. Journal of Magnetic Resonance 166 (2): 228–235.
50 50 He, Z., He, W., Wu, J.et al. (2017). The novel design of a single-sided MRI probe for assessing burn depth. Sensors 17 (3).
51 51 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). The MR cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magnetic Resonance in Medicine 82 (5): 1946–1960.
52 52 Bhat, S.S., Fernandes, T.T., Poojar, P.et al. (2020). Low-field MRI of stroke: Challenges and opportunities. Journal of Magnetic Resonance Imaging e27324 54 (2): 372–390
53 53 Okorie, C.K., Ogbole, G.I., Owolabi, M.O.et al. (2015). Role of diffusion-weighted imaging in acute stroke management using low-field magnetic resonance imaging in resource-limited settings. The West African Journal of Radiology 22 (2): 61–66.
54 54 Fassbender, K., Grotta, J.C., Walter, S.et al. (2017). Mobile stroke units for prehospital thrombolysis, triage, and beyond: Benefits and challenges. Lancet Neurology 16 (3): 227–237.
55 55 Fassbender, K., Walter, S., Grunwald, I.Q.et al. (2020). Prehospital stroke management in the thrombectomy era. Lancet Neurology 19 (7): 601–610.
56 56 Fassbender, K., Walter, S., Liu, Y.et al. (2003). “Mobile stroke unit” for hyperacute stroke treatment. Stroke 34 (6): e44.
57 57 Grunwald, I.Q., Phillips, D.J., Sexby, D.et al. (2020). Mobile stroke unit in the UK healthcare system: Avoidance of unnecessary accident and emergency admissions. Cerebrovascular Diseases 49 (4): 388–395.
58 58 Walter, S., Ragoschke-Schumm, A., Lesmeister, M.et al. (2018). Mobile stroke unit use for prehospital stroke treatment – An update. Radiologe 58 (Suppl. 1): 24–28.
59 59 Powers, W.J., Rabinstein, A.A., Ackerson, T.et al. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50 (12): e344–e418.
60 60 Powers, W.J., Rabinstein, A.A., Ackerson, T.et al. (2018). Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49 (3): e46–e110.
61 61 Schaefer, P.W., Souza, L., Kamalian, S.et al. (2015). Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke. Stroke 46 (2): 419–424.
62 62 Leiva-Salinas, C.and Wintermark, M. (2010). Imaging of acute ischemic stroke. Neuroimaging Clinics of North America 20 (4): 455–468.
63 63 Wintermark, M., Sanelli, P.C., Albers, G.W.et al. (2013). Imaging recommendations for acute stroke and transient ischemic attack patients: A joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. Journal of the American College of Radiology 10 (11): 828–832.
64 64 Li, L., Padhi, A., Ranjeva, S.L.et al. (2011). Association of bacteria with hydrocephalus in Ugandan infants. Journal of Neurosurgery: Pediatrics 7 (1): 73–87.
65 65 Warf, B.C., Alkire, B.C., Bhai, S.et al. (2011). Costs and benefits of neurosurgical intervention for infant hydrocephalus in sub-Saharan Africa. Journal of Neurosurgery: Pediatrics 8 (5): 509–521.
66 66 Kulkarni, A.V., Schiff, S.J., Mbabazi-Kabachelor, E.et al. (2017). Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. The New England Journal of Medicine 377 (25): 2456–2464.
67 67 Obungoloch, J., Harper, J.R., Consevage, S.et al. (2018). Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. MAGMA 31 (5): 665–676.
68 68 O’Reilly, T., Teeuwisse, W.M., and Webb, A.G. (2019). Three-dimensional MRI in a homogenous 27cm diameter bore Halbach array magnet. Journal of Magnetic Resonance 307: 106578.
69 69 Diehl, J., Van Doesum, F., Bakker, M.et al. (2020). The embodiment of low-field MRI for the diagnosis of infant hydrocephalus in Uganda. IEEE Global Humanitarian Technology Conference (GHTC), virtual.
70 70 O’Reilly, T., Wouter, T., Winter, L.et al. (2019). Design of a homogeneous large-bore Halbach array for low field MRI. Proceedings of the ISMRM, Montreal, Canada.
71 71 Blumich, B., Blumler, P., Eidmann, G.et al. (1998). The NMR-mouse: Construction, excitation, and applications. Magnetic Resonance Imaging 16 (5–6): 479–484.
72 72 Perlo, J., Casanova, F., and Blumich, B. (2005). Profiles with microscopic resolution by single-sided NMR. Journal of Magnetic Resonance 176 (1): 64–70.
73 73 Hurlimann, M.D.and Heaton, N.J. (2016). NMR well logging. In: Mobile NMR and MRI: Developments and Applications (eds. M. Johns, E.O. Findjonson, S. Vogt, and A. Haber), 11–79. Cambridge, UK: Royal Society of Chemistry.
74 74 Douglas-Escobar, M.and Weiss, M.D. (2015). Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatrics 169 (4): 397–403.
75 75 Finer, N.N., Robertson, C.M., Richards, R.T.et al. (1981). Hypoxic-ischemic encephalopathy in term neonates: Perinatal factors and outcome. Journal of Pediatrics 98 (1): 112–117.
76 76 Oorschot, D.E., Sizemore, R.J., and Amer, A.R. (2020). Treatment of neonatal hypoxic-ischemic encephalopathy with erythropoietin alone, and erythropoietin combined with hypothermia: history, current status, and future research. International Journal of Molecular Sciences 21 (4): 1487.
77 77 Gluckman, P.D., Wyatt, J.S., Azzopardi, D.et al. (2005). Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 365 (9460): 663–670.
78 78 Bano, S., Chaudhary, V., and Garga, U.C. (2017). Neonatal hypoxic-ischemic encephalopathy: A radiological review. Journal of Pediatric Neurosciences 12 (1): 1–6.
79 79 Arthurs, O.J., Edwards, A., Austin, T.et al. (2012). The challenges of neonatal magnetic resonance imaging. Pediatric Radiology 42 (10): 1183–1194.
80 80 Hinshaw, W.S., Andrew, E.R., Bottomley, P.A.et al. (1978). Internal structural mapping by nuclear magnetic resonance. Neuroradiology 16: 607–609.
81 81 Hinshaw, W.S., Bottomley, P.A., and Holland, G.N. (1977). Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270 (5639): 722–723.
82 82 Edelman, R.R. (2014). The history of MR imaging as seen through the pages of radiology. Radiology 273 (2 Suppl.): S181–S200.
83 83 Feinberg, D.A., Mills, C.M., Posin, J.P.et al. (1985). Multiple spin-echo magnetic resonance imaging. Radiology 155 (2): 437–442.
84 84 Sarracanie, M.and Salameh, N. (2020). Low-field MRI: How low can we go? A fresh view on an old debate. Frontiers in Physics 8: 172.
85 85 Kraus, R.H., Espy, M.A., Magnelind, P.E.et al. (2014). Ultra-Low Field Nuclear Magnetic Resonance, a New MRI Regime. Oxford, UK: Oxford University Press.
86 86 Macovski, A.and Conolly, S. (1993). Novel approaches to low-cost MRI. Magnetic Resonance in Medicine 30 (2): 221–230.
87 87 Clarke, J.C., Hatridge, M., and Mossle, M. (2007). SQUID-detected magnetic resonance imaging in microtesla fields. Annual Review of Biomedical Engineering 9: 389–413.
88 88 Inglis, B., Buckenmaier, K., Sangiorgio, P.et al. (2013). MRI of the human brain at 130 microtesla. Proceedings of the National Academy of Sciences of the United States of America 110 (48): 19194–19201.
89 89 Lin, F.H., Vesanen, P.T., Nieminen, J.O.et al. (2013). Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors. Magnetic Resonance in Medicine 70 (2): 595–600.
90 90 Savukov, I.M., Zotev, V.S., Volegov, P.L.et al. (2009). MRI with an atomic magnetometer suitable for practical imaging applications. Journal of Magnetic Resonance 199 (2): 188–191.
91 91 Tsai, L.L., Mair, R.W., Rosen, M.S.et al. (2008). An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging. Journal of Magnetic Resonance 193 (2): 274–285.
92 92 Sarracanie, M., LaPierre, C.D., Salameh, N.et al. (2015). Low-cost high-performance MRI. Scientific Reports 5: 15177.
93 93 Volegov, P.L., Mosher, J.C., Espy, M.A.et al. (2005). On concomitant gradients in low-field MRI. Journal of Magnetic Resonance 175 (1): 103–113.
94 94 Nieminen, J.O.and Ilmoniemi, R.J. (2010). Solving the problem of concomitant gradients in ultra-low-field MRI. Journal of Magnetic Resonance 207 (2): 213–219.
95 95 Hayashi, N., Watanabe, Y., Masumoto, T.et al. (2004). Utilization of low-field MR scanners. Magnetic Resonance in Medical Sciences 3 (1): 27–38.
96 96 Wald, L.L. (2019). Ultimate MRI. Journal of Magnetic Resonance 306: 139–144.
97 97 Lvovsky, Y., Stautner, E.W., and Zhang, T. (2013). Novel technologies and configurations of superconducting magnets for MRI. Superconductor Science and Technology 26: 093001).
98 98 Iwasa, Y. (2017). Toward liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience. Superconducting Science and Technology 30 (5): 053001.
99 99 Baig, T., Al Amin, A., Deissler, R.J.et al. (2017). Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems. Superconductor Science and Technology 30 (4): 043002.
100 100 Lugabsky, L.B. (1987). Optimal coils for producing uniform magnetic fields. Journal of Physics E 20 (3): 277–285.
101 101 Xu, H., Conolly, S., Scott, G.et al. (2000). Homogeneous magnet design using linear programming. IEEE Transactions on Magnetics 36 (2): 476–483.
102 102 Xu, H., Conolly, S.M., Scott, G.C.et al. (1999). Fundamental scaling relations for homogeneous magnets. Proceedings of the ISMRM 475.
103 103 Zhang, B., Gazdzinski, C., Chronik, B.et al. (2005). Simple design guidelines for short MRI systems. Magnetic Resonance Part B (Magnetic Resonance Engineering) 25B (1): 53–59.
104 104 Lucas, J., Lucas, P., and LeMercier, T. (2014). Rare Earths: Science, Technology, Production and Use, 1e, 224–225. Elsevier
105 105 Sagawa, M., Fujimura, H., Yamamoto, Y.et al. (1984). Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Transactions on Magnetics 20 (5): 1584–1589.
106 106 Kazemivalipour, E., Bhusal, B., Vu, J.et al. (2021). Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems. Magnetic Resonance in Medicine 86 (3): 1560–1572.
107 107 Halbach, K. (1979). Strong rare earth cobalt quadrupoles. IEEE Transactions on Nuclear Science 26 (3): 3882–3884.
108 108 Halbach, K. (1980). Design of permanent multipole magnets with oriented rare earth cobalt material. Journal of Nuclear Instruments & Methods 69: 1–10.
109 109 Shute, H.A., Mallison, J.C., Wilton, D.T.et al. (2000). One-sided fluxes in planar, cylindrical, and spherical magnetized structures. IEEE Transactions on Magnetics 36 (2): 440–451.
110 110 Raich, H.and Blumler, P. (2004). Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts in Magnetic Resonance 23B (1): 16–25.
111 111 Cooley, C.Z., Haskell, M.W., Cauley, S.F.et al. (2018). Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Transactions on Magnetics 54 (1): 1–12.
112 112 Purchase, A.R., Vidarsson, L., Wachowicz, K.et al. (2021). A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9: 95294–95303.
113 113 Choi, J.S.and Yoo, J. (2008). Design of a Halbach magnet array based on optimization techniques. IEEE Transactions on Magnetics 44 (10): 2361–2366.
114 114 Tewari, S., O’Reilly, T., and Webb, A. (2021). Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution. Journal of Magnetic Resonance 324: 106923.
115 115 O’Reilly, T., Teeuwisse, W.M., De Gans, D.et al. (2021). In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magnetic Resonance in Medicine 85 (1): 495–505.
116 116 Cooley, C.Z., Stockmann, J.P., and Wald, L.L. (2021). A portable brain MRI scanner based on a 72 mT, 35 kg “Halbach-bulb” magnet and external gradient coil. Proceedings of the ISMRM, virtual.
117 117 Manz, B., Benecke, M., and Volke, F. (2008). A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields. Journal of Magnetic Resonance 192 (1): 131–138.
118 118 McGinley, J.V., Ristic, M., and Young, I.R. (2016). A permanent MRI magnet for magic angle imaging having its field parallel to the poles. Journal of Magnetic Resonance 271: 60–67.
119 119 Hugon, C., D’Amico, F., Aubert, G.et al. (2010). Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: Theory and experimental developments of a simple portable magnet. Journal of Magnetic Resonance 205 (1): 75–85.
120 120 Aubert, G. (1991). Cylindrical permanent magnet with longitudinal induced field. USA patent 5014032.
121 121 Ren, Z.H., Mu, W.C., and Huang, S.Y. (2019). Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. IEEE Transactions on Magnetics 55 (1): 1–8.
122 122 Ren, Z.H., Gong, S., and Huang, S.Y. (2019). An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7: 48715–4872.
123 123 Kuang, I., Arango, N., Stockmann, J.P.et al. (2019). Equivalent-charge-based optimization of spokes and hub magnets for hand-held and classroom MR imaging. Proceedings of the ISMRM, Montreal, Canada.
124 124 Mullen, M.and Garwood, M. (2020). Contemporary approaches to high-field magnetic resonance imaging with large field inhomogeneity. Progress in Nuclear Magnetic Resonance Spectroscopy 120–121: 95–108.
125 125 Lange, K.and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8 (2): 306–316.
126 126 Harshbarger, T.B.and Twieg, D.B. (1999). Iterative reconstruction of single-shot spiral MRI with off resonance. IEEE Transactions on Medical Imaging 18 (3): 196–205.
127 127 Fessler, J. (2010). Model-based image reconstruction for MRI. IEE Signal Processing Magazine 27 (4): 81–89.
128 128 Sutton, B.P., Noll, D.C., and Fessler, J.A. (2003). Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Transactions on Medical Imaging 22 (2): 178–188.
129 129 Hurlimann, M.D.and Griffin, D.D. (2000). Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B(0) and B(1) fields and application to NMR well logging. Journal of Magnetic Resonance 143 (1): 120–135.
130 130 McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). The MR Cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magnetic Resonance in Medicine 82 (5): 1946–1960.
131 131 Ben-Eliezer, N., Shrot, Y., and Frydman, L. (2010). High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods. Magnetic Resonance Imaging 28 (1): 77–86.
132 132 Snyder, A.L., Corum, C.A., Moeller, S.et al. (2014). MRI by steering resonance through space. Magnetic Resonance in Medicine 72 (1): 49–58.
133 133 Kobayashi, N., Parkinson, B., Idiyatullin, D.et al. (2021). Development and validation of 3D MP-SSFP to enable MRI in inhomogeneous magnetic fields. Magnetic Resonance in Medicine 85 (2): 831–844.
134 134 Zhen, J.Z., O’Neill, K.T., Fridjonsson E.O.et al. (2018). A resistive Q-switch for low-field NMR systems. Journal of Magnetic Resonance 287: 33–40.
135 135 Scott, G.C., Conolly, S., and Macovski, A. (1996). Low field preamp matching design for high-Q receiver coils. Proceeding of the ISMRM, New York.
136 136 Darrasse, L.and Ginefri, J.C. (2003). Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85 (9): 915–937.
137 137 Roemer, P.B., Edelstein, W.A., Hayes, C.E.et al. (1990). The NMR phased array. Magnetic Resonance in Medicine 16 (2): 192–225.
138 138 Muller-Petke, M. (2020). Non-remote reference noise cancellation-using reference data in the presence of surface-NMR signal. Journal of Applied Geophysics 177: 104040.
139 139 Rearick, T., Charvat, G., Rosen, M.S.et al. (2016). Noise suppression methods and apparatus patent 9,797,971. 10 March 2016.
140 140 Srinivas, S.A., Cauley, S.F., Stockmann, J.P.et al. (2021). External dynamic interference estimation and removal (EDITER) for low field MRI. Magnetic Resonance in Medicine. https://onlinelibrary.wiley.com/doi/10.1002/mrm.28992.
141 141 Dyvorne, H., Rearick, T., Poole, M.et al.(2021). Freeing MRI from its Faraday cape with interference rejection. Proceedings of the 29th Annual Meeting of ISMRM, 0749, Virtual.