Читать книгу Biomolecules from Natural Sources - Группа авторов - Страница 89

References

Оглавление

1 1 Ali, N.E., Kaddam, L.A., Alkarib, S.Y., Kaballo, B.G., Khalid, S.A., Higawee, A., AbdElhabib, A., AlaaAldeen, A., Phillips, A.O., and Saeed, A.M. (2020). Gum Arabic (Acacia Senegal) augmented total antioxidant capacity and reduced c-reactive protein among haemodialysis patients in phase II trial. International Journal of Nephrology 2020: 7214673.

2 2 Kaddam, L., Babiker, R., Ali, S., Satti, S., Ali, N., Elamin, M., Mukhtar, M., Elnimeiri, M., and Saeed, A. (2020). Potential role of Acacia Senegal (Gum Arabic) as immunomodulatory agent among newly diagnosed COVID 19 patients: a structured summary of a protocol for a randomised, controlled, clinical trial. Trials 21 (1): 766.

3 3 Kaddam, L.A. and Kaddam, A.S. (2020). Effect of Gum Arabic (Acacia senegal) on C-reactive protein level among sickle cell anemia patients. BMC Research Notes 13 (1): 162.

4 4 Amara, A.A. (2015). Kostenlose Viral Ghosts, Bacterial Ghosts, Microbial Ghosts and More (ed. A.A. Amara). Schüling Verlage Germany. ISBN: 978-3-86523-260-1.

5 5 Ahmed, A.S., Khalil, A., Ito, Y., van Loosdrecht, M.C.M., Santoro, D., Rosso, D., and Nakhla, G. (2021). Dynamic impact of cellulose and readily biodegradable substrate on oxygen transfer efficiency in sequencing batch reactors. Water Research 190: 116724.

6 6 Chaudhary, J., Thakur, S., Sharma, M., Gupta, V.K., and Thakur, V.K. (2020). Development of biodegradable agar-agar/gelatin-based superabsorbent hydrogel as an efficient moisture-retaining agent. Biomolecules 10 (6).

7 7 Dutta, S.D., Hexiu, J., Patel, D.K., Ganguly, K., and Lim, K.T. (2021). 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. International Journal of Biological Macromolecules 167: 644–658.

8 8 Hai, L., Choi, E.S., Zhai, L., Panicker, P.S., and Kim, J. (2020). Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. International Journal of Biological Macromolecules 144: 491–499.

9 9 Ichimaru, H., Mizuno, Y., Chen, X., Nishiguchi, A., and Taguchi, T. (2020). Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomaterials Science 9: 861–883.

10 10 Li, M., Dong, Q., Xiao, Y., Du, Q., Huselsteind, C., Zhang, T., He, X., Tian, W., and Chen, Y. (2020). A biodegradable soy protein isolate-based waterborne polyurethane composite sponge for implantable tissue engineering. Journal of Materials Science: Materials in Medicine 31 (12): 120.

11 11 Olaiya, N.G., Nuryawan, A., Oke, P.K., Khalil, H., Rizal, S., Mogaji, P.B., Sadiku, E.R., Suprakas, S.R., Farayibi, P.K., Ojijo, V., and Paridah, M.T. (2020). The role of two-step blending in the properties of starch/chitin/polylactic acid biodegradable composites for biomedical applications. Polymers (Basel) 12 (3).

12 12 Wissamitanan, T., Dechwayukul, C., Kalkornsurapranee, E., and Thongruang, W. (2020). Proper blends of biodegradable polycaprolactone and natural rubber for 3D printing. Polymers (Basel) 12 (10): 2416.

13 13 Xu, J., Sagnelli, D., Faisal, M., Perzon, A., Taresco, V., Mais, M., Giosafatto, C.V.L., Hebelstrup, K.H., Ulvskov, P., Jorgensen, B., Chen, L., Howdle, S.M., and Blennow, A. (2021). Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers 253: 117277.

14 14 Zhang, J., Xu, W.R., Zhang, Y.C., Han, X.D., Chen, C., and Chen, A. (2020). In situ generated silica reinforced polyvinyl alcohol/liquefied chitin biodegradable films for food packaging. Carbohydrate Polymers 238: 116182.

15 15 Bui, A.T., Williams, B.A., Hoedt, E.C., Morrison, M., Mikkelsen, D., and Gidley, M.J. (2020). High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Food and Function 11 (6): 5635–5646.

16 16 Maevskaia, E.N., Shabunin, A.S., Dresvyanina, E.N., Dobrovol’skaya, I.P., Yudin, V.E., Paneyah, M.B., Fediuk, A.M., Sushchinskii, P.L., Smirnov, G.P., Zinoviev, E.V., and Morganti, P. (2020). Influence of the introduced chitin nanofibrils on biomedical properties of chitosan-based materials. Nanomaterials (Basel) 10 (5): 945.

17 17 Dashtban, M., Schraft, H., and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences 5 (6): 578–595.

18 18 Feeney, K.A., Wellner, N., Gilbert, S.M., Halford, N.G., Tatham, A.S., Shewry, P.R., and Belton, P.S. (2003). Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 72 (2): 123–131.

19 19 Fritzsche, K., Lenz, R.W., and Fuller, R.C. (1990). Bacterial polyesters containing branched poly(beta-hydroxyalkanoate) units. International Journal of Biological Macromolecules 12 (2): 92–101.

20 20 Kim, Y.B., Lenz, R.W., and Fuller, R.C. (1992). Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25 (7): 1852–1857.

21 21 Pourabedin, M., Xu, Z., Baurhoo, B., Chevaux, E., and Zhao, X. (2014). Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Canadian Journal of Microbiology 60 (5): 255–266.

22 22 Japelj, N., Suligoj, T., Zhang, W., Corte-Real, B., Messing, J., and Ciclitira, P.J. (2020). Natural variants of alpha-gliadin peptides with wheat proteins with reduced toxicity in coeliac disease. British Journal of Nutrition 123 (12): 1382–1389.

23 23 Pei, F., Sun, L., Fang, Y., Yang, W., Ma, G., Ma, N., and Hu, Q. (2020). Behavioral changes in glutenin macropolymer fermented by Lactobacillus plantarum LB-1 to promote the rheological and gas production properties of dough. Journal of Agricultural and Food Chemistry 68 (11): 3585–3593.

24 24 Sharma, I. and Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules 166: 1046–1056.

25 25 Balitaan, J.N.I., Hsiao, C.D., Yeh, J.M., and Santiago, K.S. (2020). Innovation inspired by nature: biocompatible self-healing injectable hydrogels based on modified-beta-chitin for wound healing. International Journal of Biological Macromolecules 162: 723–736.

26 26 Celik, C., Ildiz, N., Sagiroglu, P., Atalay, M.A., Yazici, C., and Ocsoy, I. (2020). Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta 219: 121292.

27 27 Ferreira, L.M., Sari, M.H.M., Azambuja, J.H., da Silveira, E.F., Cervi, V.F., Marchiori, M.C.L., Maria-Engler, S.S., Wink, M.R., Azevedo, J.G., Nogueira, C.W., Braganhol, E., and Cruz, L. (2020). Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Investigational New Drugs 38 (3): 662–674.

28 28 Hassan, M.A., Amara, A.A., Abuelhamd, A.T., and Haroun, B.M. (2010). Leucocytes show improvement growth on PHA polymer surface. Pakistan Journal of Pharmaceutical Sciences 23 (3): 332–336.

29 29 Hua, D., Gao, S., Zhang, M., Ma, W., and Huang, C. (2020). A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers 247: 116743.

30 30 Khan, M.U.A., Raza, M.A., Razak, S.I.A., Abdul Kadir, M.R., Haider, A., Shah, S.A., Mohd Yusof, A.H., Haider, S., Shakir, I., and Aftab, S. (2020). Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. Journal of Tissue Engineering and Regenerative Medicine 14 (10): 1488–1501.

31 31 Stark, M., DeBernardis, D., McDowell, C., Ford, E., and McMillan, S. (2020). Percutaneous skeletal fixation of painful subchondral bone marrow edema utilizing an injectable, synthetic, biocompatible hyaluronic acid-based bone graft substitute. Arthroscopy Techniques 9 (11): e1645–e1650.

32 32 Araujo, D., Alves, V.D., Lima, S.A.C., Reis, S., Freitas, F., and Reis, M.A.M. (2020). Novel hydrogels based on yeast chitin-glucan complex: characterization and safety assessment. International Journal of Biological Macromolecules 156: 1104–1111.

33 33 Johnson, W., Jr., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Jr., Shank, R.C., Slaga, T.J., Snyder, P.W., Gill, L.J., and Heldreth, B. (2020). Safety assessment of silk protein ingredients as used in cosmetics. International Journal of Toxicology 39 (3_suppl): 127S–144S.

34 34 Kasai, D. (2020). Poly(cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Bioscience, Biotechnology and Biochemistry 84 (6): 1089–1097.

35 35 Amara, A. (2008). Polyhydroyalkanoates: from basic research and molecular biology to application. IIUM Engineering Journal 9 (1): 37–73.

36 36 Chaikaew, P., Adeyemi, O., Hamilton, A.O., and Clifford, O. (2020). Spatial characteristics and economic value of threatened species (Khaya ivorensis). Scientific Reports 10 (1): 6266.

37 37 Amara, A.A. and Moawad, H. (2011). PhaC synthases and PHA depolymerases: the enzymes that produce and degrade plastic. IIUM Engineering Journal 12 (4): 21–37.

38 38 Frausto de Silva, J.J.R. and Williams, R.J.P. (1993). The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford: Clarendon Press.

39 39 Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience 1 (1): 1–24.

40 40 Asayama, S., Nogawa, M., Takei, Y., Akaike, T., and Maruyama, A. (1998). Synthesis of novel polyampholyte comb-type copolymers consisting of a Poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjugate Chemistry 9 (4): 476–481.

41 41 Record, M.T. (1975). Effects of Na+ and Mg++ ions on the helix-coil transition of DNA. Biopolymers 14 (10): 2137–2158.

42 42 Zheng, J., Zhu, G., Li, Y., Li, C., You, M., Chen, T., Song, E., Yang, R., and Tan, W. (2013). A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7 (8): 6545–6554.

43 43 Rau, I., Grote, J.G., Kajzar, F., and Pawlicka, A. (2012). DNA novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Physique 13 (8): 853–864.

44 44 Smith, T.J. (1994). Calcium alginate hydrogel as a matrix for enteric delivery of nucleic acids. BioPharm 7 (3): 54–55.

45 45 Agostinacchio, F., Mu, X., Dire, S., Motta, A., and Kaplan, D.L. (2020). In Situ 3D printing: opportunities with silk inks. Trends in Biotechnology 39 (7): 19–30.

46 46 Xiao, C.Y., Zhu, Z.L., Zhang, C., Fu, M., Qiao, H.J., Wang, G., and Dang, E.L. (2020). Small interfering RNA targeting of keratin 17 reduces inflammation in imiquimod-induced psoriasis-like dermatitis. Chinese Medical Journal (Engl) 133 (24): 2910–2918.

47 47 Raychaudhuri, R., Naik, S., Shreya, A.B., Kandpal, N., Pandey, A., Kalthur, G., and Mutalik, S. (2020). Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: synthesis, nanoformulations and toxicological perspective. International Journal of Biological Macromolecules 161: 1189–1205.

48 48 Jana, P., Ghosh, S., and Sarkar, K. (2020). Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. International Journal of Biological Macromolecules 161: 1149–1160.

49 49 Kraskouski, A., Hileuskaya, K., Kulikouskaya, V., Kabanava, V., Agabekov, V., Pinchuk, S., Vasilevich, I., Volotovski, I., Kuznetsova, T., and Lapitskaya, V. (2020). Polyvinyl alcohol and pectin blended films: preparation, characterization and mesenchymal stem cells attachment. Journal of Biomedical Materials Research A 109 (8): 1379–1392.

50 50 Randelli, F., Sartori, P., Carlomagno, C., Bedoni, M., Menon, A., Vezzoli, E., Sommariva, M., and Gagliano, N. (2020). The collagen-based medical device MD-tissue acts as a mechanical scaffold influencing morpho-functional properties of cultured human tenocytes. Cells 9 (12): 2641.

51 51 Augustine, R., Hasan, A., Dalvi, Y.B., Rehman, S.R.U., Varghese, R., Unni, R.N., Yalcin, H.C., Alfkey, R., Thomas, S., and Al Moustafa, A.E. (2021). Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. Materials Science and Engineering C: Materials for Biological Applications 118: 111519.

52 52 Djafari, J., Fernandez-Lodeiro, J., Santos, H.M., Lorenzo, J., Rodriguez-Calado, S., Bertolo, E., Capelo-Martinez, J.L., and Lodeiro, C. (2020). Study and preparation of Multifunctional Poly(L-Lysine)@Hyaluronic Acid Nanopolyplexes for the effective delivery of tumor suppressive MiR-34a into triple-negative breast cancer cells. Materials (Basel) 13 (23): 5309.

53 53 Alexakis, T., Boadi, D.K., Quong, D., Groboillot, A., O’Neill, I., Poncelet, D., and Neufeld, R.J. (1995). Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Applied Biochemistry and Biotechnology 50 (1): 93–106.

54 54 Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., and Adley, C. (2010). An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnology Advances 28 (2): 232–254.

55 55 Doostan, M., Maleki, H., Khoshnevisan, K., Faridi-Majidi, R., and Arkan, E. (2021). Effective antibacterial electrospun cellulose acetate nanofibrous patches containing chitosan/erythromycin nanoparticles. International Journal of Biological Macromolecules 31 (168): 464–473.

56 56 Ridley, M. (2006). Genome. New York, NY: Harper Perennial.

57 57 Amara, A.A. (2013). Pharmaceutical and industrial protein engineering: where we are? Pakistan Journal of Pharmaceutical Sciences 26 (1): 217–232.

58 58 Bloise, N., Patrucco, A., Bruni, G., Montagna, G., Caringella, R., Fassina, L., Tonin, C., and Visai, L. (2020). In vitro production of calcified bone matrix onto wool keratin scaffolds via osteogenic factors and electromagnetic stimulus. Materials (Basel) 13 (14): 3052.

59 59 Barone, J., Schmidt, W., and Liebner, C. (2005). Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology 65 (3–4): 683–692.

60 60 Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., Vasileva-Tonkova, E., Haertle, T., and Nedkov, P. (2005). Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Letters in Applied Microbiology 40 (5): 335–340.

61 61 Chon, C.H., Chung, S.Y., Ng, C.S., and Fuchs, G.J. (2005). Looped silk tie: surgical technique for management of the renal vein during laparoscopic live-donor nephrectomy. Journal of Endourology 19 (3): 401–405.

62 62 Elvin, C.M., Carr, A.G., Huson, M.G., Maxwell, J.M., Pearson, R.D., Vuocolo, T., Liyou, N.E., Wong, D.C., Merritt, D.J., and Dixon, N.E. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437 (7061): 999–1002.

63 63 Leknes, K.N., Roynstrand, I.T., and Selvig, K.A. (2005). Human gingival tissue reactions to silk and expanded polytetrafluoroethylene sutures. Journal of Periodontology 76 (1): 34–42.

64 64 Rising, A., Nimmervoll, H., Grip, S., Fernandez-Arias, A., Storckenfeldt, E., Knight, D.P., Vollrath, F., and Engstrom, W. (2005). Spider silk proteins–mechanical property and gene sequence. Zoological Science 22 (3): 273–281.

65 65 Mahabusarakam, W., Chairerk, P., and Taylor, W.C. (2005). Xanthones from Garcinia cowa Roxb. latex. Phytochemistry 66 (10): 1148–1153.

66 66 Rotondi, K.S. and Gierasch, L.M. (2005). Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins. Biopolymers 84 (1): 13–22.

67 67 Seebach, D., Hook, D.F., and Glattli, A. (2006). Helices and other secondary structures of beta- and gamma-peptides. Biopolymers 84 (1): 23–37.

68 68 Alemdar, A., Iridag, Y., and Kazanci, M. (2005). Flow behavior of regenerated wool-keratin proteins in different mediums. International Journal of Biological Macromolecules 35 (3–4): 151–153.

69 69 Alibardi, L. and Toni, M. (2004). Localization and characterization of specific cornification proteins in avian epidermis. Cells Tissues Organs 178 (4): 204–215.

70 70 Hamada, T., Kawano, Y., Szczecinska, W., Wozniak, K., Yasumoto, S., Kowalewski, C., and Hashimoto, T. (2005). Novel keratin 5 and 14 gene mutations in patients with epidermolysis bullosa simplex from Poland. Archives of Dermatological Research 296 (12): 577–579.

71 71 Abdolmaleki, K., Alizadeh, L., Hosseini, S.M., and Nayebzadeh, K. (2020). Concentrated O/W emulsions formulated by binary and ternary mixtures of sodium caseinate, xanthan and guar gums: rheological properties, microstructure, and stability. Food Science and Biotechnology 29 (12): 1685–1693.

72 72 Alizadeh-Sani, M., Rhim, J.W., Azizi-Lalabadi, M., Hemmati-Dinarvand, M., and Ehsani, A. (2020). Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. International Journal of Biological Macromolecules 145: 835–844.

73 73 Antonov, Y.A. and Moldenaers, P. (2009). Inducing demixing of semidilute and highly compatible biopolymer mixtures in the presence of a strong polyelectrolyte. Biomacromolecules 10 (12): 3235–3245.

74 74 Antonov, Y.A., Van Puyvelde, P., and Moldenaers, P. (2004). Interfacial tension of aqueous biopolymer mixtures close to the critical point. International Journal of Biological Macromolecules 34 (1–2): 29–35.

75 75 Baracat, M.M., Nakagawa, A.M., Casagrande, R.B., Georgetti, S.R., Verri, W.A., and de Freitas, O. (2012). Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech 13 (2): 364–372.

76 76 Nath, A., Dixit, M., Bandiya, A., Chavda, S., and Desai, A.J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresource Technology 99 (13): 5749–5755.

77 77 Rollini, M., Musatti, A., Cavicchioli, D., Bussini, D., Farris, S., Rovera, C., Romano, D., De Benedetti, S., and Barbiroli, A. (2020). From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: a circular economy case study. Scientific Reports 10 (1): 21358.

78 78 Singh, A.K. and Mallick, N. (2009). Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. Journal of Industrial Microbiology and Biotechnology 36 (3): 347–354.

79 79 Surh, J., Vladisavljevi Cacute, G.T., Mun, S., and McClements, D.J. (2007). Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. Journal of Agricultural and Food Chemistry 55 (1): 175–184.

80 80 Baran, R., Tosti, A., Hartmane, I., Altmeyer, P., Hercogova, J., Koudelkova, V., Ruzicka, T., Combemale, P., and Mikazans, I. (2009). An innovative water-soluble biopolymer improves efficacy of ciclopirox nail lacquer in the management of onychomycosis. Journal of the European Academy of Dermatology and Venereology 23 (7): 773–781.

81 81 Casaroto, A.R., da Silva, R.A., Salmeron, S., Rezende, M.L.R., Dionisio, T.J., Santos, C.F.D., Pinke, K.H., Klingbeil, M.F.G., Salomao, P.A., Lopes, M.M.R., and Lara, V.S. (2019). Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via Nitric Oxide (NO) and beta-Defensin 2 (hBD-2). Cells 8 (7): 707.

82 82 Bondarenko, L.B. (2004). Collagen transformation in organism: modern state of the problem. Ukrainskii Biokhimicheskii Zhurnal 76 (5): 5–15.

83 83 Brodsky, B. and Persikov, A.V. (2005). Molecular structure of the collagen triple helix. Advances in Protein Chemistry 70: 301–339.

84 84 Gonzalez-Masis, J., Cubero-Sesin, J.M., Guerrero, S., Gonzalez-Camacho, S., Corrales-Urena, Y.R., Redondo-Gomez, C., Vega-Baudrit, J.R., and Gonzalez-Paz, R.J. (2020). Self-assembly study of type I collagen extracted from male Wistar Hannover rat tail tendons. Biomaterials Research 24 (1): 19.

85 85 Kandan, P.V., Balupillai, A., Kanimozhi, G., Khan, H.A., Alhomida, A.S., and Prasad, N.R. (2020). Opuntiol prevents photoaging of mouse skin via blocking inflammatory responses and collagen degradation. Oxidative Medicine and Cellular Longevity 2020: 5275178.

86 86 Hamberg, L., Walkenstrom, P., and Hermansson, A.M. (2002). Shaping of gelling biopolymer drops in an elongation flow. Journal of Colloid and Interface Science 252 (2): 297–308.

87 87 Buescher, J.M. and Margaritis, A. (2007). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology 27 (1): 1–19.

88 88 Dionisi, D., Majone, M., Miccheli, A., Puccetti, C., and Sinisi, C. (2004). Glutamic acid removal and PHB storage in the activated sludge process under dynamic conditions. Biotechnology and Bioengineering 86 (7): 842–851.

89 89 Inbaraj, B.S., Chiu, C.P., Ho, G.H., Yang, J., and Chen, B.H. (2008). Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(gamma-glutamic acid). Bioresource Technology 99 (5): 1026–1035.

90 90 Mooibroek, H., Oosterhuis, N., Giuseppin, M., Toonen, M., Franssen, H., Scott, E., Sanders, J., and Steinbuchel, A. (2007). Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology 77 (2): 257–267.

91 91 Obst, M., Sallam, A., Luftmann, H., and Steinbuchel, A. (2004). Isolation and characterization of gram-positive cyanophycin-degrading bacteria-kinetic studies on cyanophycin depolymerase activity in aerobic bacteria. Biomacromolecules 5 (1): 153–161.

92 92 Reinecke, F. and Steinbuchel, A. (2009). Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Journal of Molecular Microbiology and Biotechnology 16 (1–2): 91–108.

93 93 Stubbe, J., Tian, J., He, A., Sinskey, A.J., Lawrence, A.G., and Liu, P. (2005). Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annual Review of Biochemistry 74: 433–480.

94 94 Muirhead, H. and Perutz, M. (1963). Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 A resolution. Nature 199 (4894): 633–638.

95 95 Kendrew, J., Bodo, G., Dintzis, H., Parrish, R., Wyckoff, H., and Phillips, D. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181 (4610): 662–666.

96 96 Goodenough, P.W. (1995). A review of protein engineeringfor the food industry. Molecular Biotechnology 4: 151–166.

97 97 Crisman, R.L. and Randolph, T.W. (2009). Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnology and Bioengineering 102 (2): 483–492.

98 98 Amara, A.A. (2015). An overview of the molecular and cellular interactions of some bioactive compounds. In: Biotechnology of Bioactive Compounds (ed. V.K. Gupta and M.G. Tuohy, co-ed. A. O’Donovan and M. Lohani), 527–554. John Wiley & Sons, Ltd.

99 99 Runbingh, D.N. (1997). Protein Engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8: 417–422.

100 100 Schäfer, T., Kirk, O., Borchert, T.V., Fuglsang, C.C., Pedersen, S., Salmon, S., Olsen, H.S., Deinhammer, R., and Lund, H. (2002). Enzymes for technical applications. In: Biopolymers Online (ed. R. Fahnestock and S.R. Steinbüchel), 377–437. Wiley VCH.

101 101 Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62 (3): 597–635.

102 102 Mozhaev, V.V. (1993). Mechanism-based strategies for protein thermostabilization. Trends in Biotechnology 11 (3): 88–95.

103 103 Krahe, M., Antranikian, G., and Mãrkl, H. (1996). Fermentation of extremophilic microorganisms. FEMS Microbiology Reviews 18 (2–3): 271–285.

104 104 Adams, M.W.W. and Kelly, R.M. (1998). Finding and using hyperthermophilic enzymes. Trends in Biotechnology 16 (8): 329–332.

105 105 Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews 63 (4): 735–750.

106 106 Strausberg, S.L., Alexander, P.A., Gallagher, D.T., Gilliland, G.L., Barnett, B.L., and Bryan, P.N. (1995). Directed evolution of a subtilisin with calcium-independent stability. Nature Biotechnology 13 (7): 669–673.

107 107 Van Dyke, M.I., Lee, H., and Trevors, J.T. (1991). Applications of microbial surfactants. Biotechnology Advances 9 (2): 241–252.

108 108 Beer, H.D., Wohlfahrt, G., McCarthy, J.E.G., Schomburg, D., and Schmid, R.D. (1996). Analysis of the catalyic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Engineering, Design and Selection 9 (6): 507–517.

109 109 Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., and Menge, U. (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343 (6260): 767–770.

110 110 Martinelle, M., Holmquist, M., Clausen, I.G., Patkar, S., Svendsen, A., and Hult, K. (1996). The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Engineering, Design and Selection 9 (6): 519–524.

111 111 Rubingh, D.N. (1996). The influence of surfactants on enzyme activity. Current Opinion in Colloid & Interface Science 1 (5): 598–603.

112 112 Rubingh, D.N. (1997). Protein engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8 (4): 417–422.

113 113 Shak, S., Capon, D.J., Hellmiss, R., Marsters, S.A., and Baker, C.L. (1990). Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proceedings of the National Academy of Sciences 87 (23): 9188–9192.

114 114 Breedveld, F.C. (2000). Therapeutic monoclonal antibodies. The Lancet 355 (9205): 735–740.

115 115 Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321 (6069): 522–525.

116 116 Whittingham, J.L., Havelund, S., and Jonassen, I. (1997). Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry 36 (10): 2826–2831.

117 117 Branningan, J.A. and Wilkinson, A.J. (2002). Protein engineering 20 years on. Nature Reviews Molecular Cell Biology 3: 964–970.

118 118 Baspinar, B. and Yardimci, H. (2020). Gluten-free casein-free diet for autism spectrum disorders: can it be effective in solving behavioural and gastrointestinal problems? Eurasian Journal of Medicine 52 (3): 292–297.

119 119 Jahromi, M., Niakousari, M., Golmakani, M.T., and Mohammadifar, M.A. (2020). Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. International Journal of Biological Macromolecules 165 (Pt B): 1949–1959.

120 120 Pan, X., Mu, M., Hu, B., Yao, P., and Jiang, M. (2005). Micellization of casein-graft-dextran copolymer prepared through Maillard reaction. Biopolymers 81 (1): 29–38.

121 121 Nash, W., Pinder, D.N., Hemar, Y., and Singh, H. (2002). Dynamic light scattering investigation of sodium caseinate and xanthan mixtures. International Journal of Biological Macromolecules 30 (5): 269–271.

122 122 Polari, L., Alam, C.M., Nystrom, J.H., Heikkila, T., Tayyab, M., Baghestani, S., and Toivola, D.M. (2020). Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. International Journal of Biochemistry & Cell Biology 129: 105878.

123 123 Di Foggia, M., Boga, C., Micheletti, G., Nocentini, B., and Taddei, P. (2021). Structural investigation on damaged hair keratin treated with alpha,beta-unsaturated Michael acceptors used as repairing agents. International Journal of Biological Macromolecules 167: 620–632.

124 124 Zahara, I., Arshad, M., Naeth, M.A., Siddique, T., and Ullah, A. (2021). Feather keratin derived sorbents for the treatment of wastewater produced during energy generation processes. Chemosphere 273: 128545.

125 125 Li, L., Yang, H., Li, X., Yan, S., Xu, A., You, R., and Zhang, Q. (2021). Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Carbohydrate Polymers 253: 117214.

126 126 Battampara, P., Nimisha Sathish, T., Reddy, R., Guna, V., Nagananda, G.S., Reddy, N., Ramesha, B.S., Maharaddi, V.H., Rao, A.P., Ravikumar, H.N., Biradar, A., and Radhakrishna, P.G. (2020). Properties of chitin and chitosan extracted from silkworm pupae and egg shells. International Journal of Biological Macromolecules 161: 1296–1304.

127 127 Cabana, F. and Tay, C. (2020). The addition of soil and chitin into Sunda pangolin (Manis javanica) diets affect digestibility, faecal scoring, mean retention time and body weight. Zoo Biology 39 (1): 29–36.

128 128 Asapur, P., Mahapatra, S.K., and Banerjee, I. (2020). Secondary structural analysis of non-mulberry silk fibroin nanoparticles synthesized by using microwave and acetone method. Journal of Biomolecular Structure and Dynamics 4: 1–10.

129 129 Aparicio-Rojas, G.M., Medina-Vargas, G., and Diaz-Puentes, E. (2020). Thermal, structural and mechanical characterization of Nephila clavipes spider silk in southwest Colombia. Heliyon 6 (11): e05262.

130 130 Fernandez-Saiz, P., Lagaron, J.M., Hernandez-Muñoz, P., and Ocio, M.J. (2008). Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. International Journal of Food Microbiology 124 (1): 13–20.

131 131 Mariod, A.A. and Fadul, H. (2013). Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making. Food Science and Technology International 21 (5): 380–391.

132 132 Selvakumar, G. and Lonchin, S. (2020). Fabrication and characterization of collagen-oxidized pullulan scaffold for biomedical applications. International Journal of Biological Macromolecules 164: 1592–1599.

133 133 Browning, A.C., Gray, T., and Amoaku, W.M. (2005). Isolation, culture, and characterisation of human macular inner choroidal microvascular endothelial cells. British Journal of Ophthalmology 89 (10): 1343–1347.

134 134 Claudepierre, T., Manglapus, M.K., Marengi, N., Radner, S., Champliaud, M.F., Tasanen, K., Bruckner-Tuderman, L., Hunter, D.D., and Brunken, W.J. (2005). Collagen XVII and BPAG1 expression in the retina: evidence for an anchoring complex in the central nervous system. Journal of Comparative Neurology 487 (2): 190–203.

135 135 Cosar, C.B., Ceyhan, N., Sevim, S., Sakaoglu, N., Sirvanci, S., San, T., Kurtkaya, O., and Acar, S. (2005). Corneal perforation with minor trauma: Ehlers-Danlos syndrome type VI. Ophthalmic Surgery Lasers and Imaging 36 (4): 350–351.

136 136 Diamantopoulos, C., Delliou, E., Kapranou, A., Balatsouras, D., and Elemenoglou, I. (2005). Collagenous spherulosis in epithelial-myoepithelial carcinoma of the submandibular gland: histologic and immunohistochemical study of a case. Journal of Otolaryngology 34 (4): 265–266.

137 137 Zhang, X., Wu, X., and Xia, K. (2013). Cellulose-wheat gluten bulk plastic materials produced from processing raw powders by severe shear deformation. Carbohydrate Polymers 92 (2): 2206–2211.

138 138 Markgren, J., Hedenqvist, M., Rasheed, F., Skepo, M., and Johansson, E. (2020). Glutenin and gliadin, a piece in the puzzle of their structural properties in the cell described through Monte Carlo simulations. Biomolecules 10 (8): 1095.

139 139 McMaster, T.J., Miles, M.J., Wannerberger, L., Eliasson, A.-C., Shewry, P.R., and Tatham, A.S. (1999). Identification of microphases in mixed alpha- and omega-gliadin protein films investigated by atomic force microscopy. Journal of Agricultural and Food Chemistry 47 (12): 5093–5099.

140 140 Fisichella, S., Amato, M.E., Lafiandra, D., Mantarro, D., Palermo, A., Savarino, A., and Scarlata, G. (2004). Structural studies of wheat flour glutenin polymers by CD spectroscopy. Biopolymers 74 (4): 287–301.

141 141 Altenbach, S.B., Chang, H.C., Rowe, M.H., Yu, X.B., Simon-Buss, A., Seabourn, B.W., Green, P.H., and Alaedini, A. (2020). Reducing the immunogenic potential of wheat flour: silencing of alpha gliadin genes in a U.S. wheat cultivar. Frontiers of Plant Science 11: 20.

142 142 Feng, Y., Zhang, H., Fu, B., Iftikhar, M., Liu, G., and Wang, J. (2020). Interactions between dietary fiber and ferulic acid change the aggregation of glutenin, gliadin and glutenin macropolymer in wheat flour system. Journal of the Science of Food and Agriculture 101 (5): 1979–1988.

143 143 Erdem, B.G. and Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food Chemistry 339: 127976.

144 144 Huang, T., Tu, Z., Shangguan, X., Wang, H., Zhang, L., and Bansal, N. (2021). Characteristics of fish gelatin-anionic polysaccharide complexes and their applications in yoghurt: rheology and tribology. Food Chemistry 343: 128413.

145 145 Di Bari, M., Cavatorta, F., Deriu, A., and Albanese, G. (2001). Mean square fluctuations of hydrogen atoms and water-biopolymer interactions in hydrated saccharides. Biophysical Journal 81 (2): 1190–1194.

146 146 Petersson, M., Loren, N., and Stading, M. (2005). Characterization of phase separation in film forming biopolymer mixtures. Biomacromolecules 6 (2): 932–941.

147 147 Chengyao, X., Yan, Q., Chaonan, D., Xiaopei, C., Yanxin, W., Ding, L., Xianfeng, Y., Jian, H., Yan, H., Zhongli, C., and Zhoukun, L. (2020). Enzymatic properties of an efficient glucan branching enzyme and its potential application in starch modification. Protein Expression and Purification 178: 105779.

148 148 Kamaldeen, O.S., Ariahu, C.C., and Yusufu, M.I. (2020). Application of soy protein isolate and cassava starch based film solutions as matrix for ionic encapsulation of carrot powders. Journal of Food Science and Technology 57 (11): 4171–4181.

149 149 Jabar, J.M., Alabi, K.A., and Lawal, A.K. (2020). Synthesis, characterization and application of novel 1, 3-bis[(furan-2-l)methylene]thiourea functional dye on wool and cotton fabrics. SN Applied Sciences 2 (11): 1850.

150 150 Jin, K., Tang, Y., Liu, J., Wang, J., and Ye, C. (2020). Nanofibrillated cellulose as coating agent for food packaging paper. International Journal of Biological Macromolecules 168: 331–338.

151 151 Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J., and Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: a review. International Journal of Polymer Science 2011: 1–35.

152 152 Ferrari, R.R., Onuferko, T.M., Monckton, S.K., and Packer, L. (2020). The evolutionary history of the cellophane bee genus Colletes Latreille (Hymenoptera: Colletidae): molecular phylogeny, biogeography and implications for a global infrageneric classification. Molecular Phylogenetics and Evolution 146: 106750.

153 153 Abeer, M.M., Mohd Amin, M.C.I., and Martin, C. (2014). A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. Journal of Pharmacy and Pharmacology 66 (8): 1047–1061.

154 154 Amin, M.C.I.M., Abadi, A.G., and Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers 99: 180–189.

155 155 Ciecholewska-Jusko, D., Zywicka, A., Junka, A., Drozd, R., Sobolewski, P., Migdal, P., Kowalska, U., Toporkiewicz, M., and Fijalkowski, K. (2020). Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydrate Polymers 253: 117247.

156 156 Gao, G., Cao, Y., Zhang, Y., Wu, M., Ma, T., and Li, G. (2020). In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydrate Polymers 248: 116788.

157 157 Islam, S.U., Ul-Islam, M., Ahsan, H., Ahmed, M.B., Shehzad, A., Fatima, A., Sonn, J.K., and Lee, Y.S. (2020). Potential applications of bacterial cellulose and its composites for cancer treatment. International Journal of Biological Macromolecules 168: 301–330.

158 158 Phomrak, S., Nimpaiboon, A., Newby, B.Z., and Phisalaphong, M. (2020). Natural rubber latex foam reinforced with micro- and nanofibrillated cellulose via Dunlop method. Polymers (Basel) 12 (9): 1959.

159 159 Santos, T.A. and Spinace, M.A.S. (2021). Sandwich panel biocomposite of thermoplastic corn starch and bacterial cellulose. International Journal of Biological Macromolecules 167: 358–368.

160 160 Wang, F.P., Zhao, X.J., Wahid, F., Zhao, X.Q., Qin, X.T., Bai, H., Xie, Y.Y., Zhong, C., and Jia, S.R. (2021). Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydrate Polymers 253: 117220.

161 161 Kochumalayil, J.J., Zhou, Q., Kasai, W., and Berglund, L.A. (2013). Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydrate Polymers 93 (2): 466–472.

162 162 Butler, M.F., Clark, A.H., and Adams, S. (2006). Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin. Biomacromolecules 7 (11): 2961–2970.

163 163 Di Martino, A., Sittinger, M., and Risbud, M.V. (2005). Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26 (30): 5983–5990.

164 164 Khan, R. and Dhayal, M. (2009). Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A. Biosensors and Bioelectronics 24 (6): 1700–1705.

165 165 Xu, Z., Gao, N., Chen, H., and Dong, S. (2005). Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11. Langmuir 21 (23): 10808–10813.

166 166 Monteiro, O.A., Jr. and Airoldi, C. (1999). Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions. Journal of Colloid and Interface Science 212 (2): 212–219.

167 167 Zhu, A., Zhang, M., and Shen, J. (2003). Covalent immobilization of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent on biopolymer substrate surface and bloodcompatibility characterization. Journal of Biomaterials Science. Polymer Edition 14 (5): 411–421.

168 168 Kim, D., Petrisor, G., and Yen, T.F. (2005). Evaluation of biopolymer-modified concrete systems for disposal of cathode ray tube glass. Journal of the Air and Waste Management Association 55 (7): 961–969.

169 169 Kim, D., Quinlan, M., and Yen, T.F. (2009). Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Management 29 (1): 321–328.

170 170 Gils, P.S., Ray, D., and Sahoo, P.K. (2009). Characteristics of xanthan gum-based biodegradable superporous hydrogel. International Journal of Biological Macromolecules 45 (4): 364–371.

171 171 Cortes, H., Caballero-Floran, I.H., Mendoza-Munoz, N., Escutia-Guadarrama, L., Figueroa-Gonzalez, G., Reyes-Hernandez, O.D., Gonzalez-Del Carmen, M., Varela-Cardoso, M., Gonzalez-Torres, M., Floran, B., Del Prado-Audelo, M.L., and Leyva-Gomez, G. (2020). Xanthan gum in drug release. Cellular and Molecular Biology (Noisy-le-grand) 66 (4): 199–207.

172 172 Alves, A., Miguel, S.P., Araujo, A., de Jesus Valle, M.J., Sanchez Navarro, A., Correia, I.J., Ribeiro, M.P., and Coutinho, P. (2020). Xanthan Gum-Konjac glucomannan blend hydrogel for wound healing. Polymers (Basel) 12 (1): 99.

173 173 Byram, P.K., Sunka, K.C., Barik, A., Kaushal, M., Dhara, S., and Chakravorty, N. (2020). Biomimetic silk fibroin and xanthan gum blended hydrogels for connective tissue regeneration. International Journal of Biological Macromolecules 165 (Pt A): 874–882.

174 174 Dzionek, A., Wojcieszynska, D., Adamczyk-Habrajska, M., Karczewski, J., Potocka, I., and Guzik, U. (2021). Xanthan gum as a carrier for bacterial cell entrapment: developing a novel immobilised biocatalyst. Materials Science and Engineering C: Materials for Biological Applications 118: 111474.

175 175 Castro, G.R., Panilaitis, B., and Kaplan, D.L. (2008). Emulsan, a tailorable biopolymer for controlled release. Bioresource Technology 99 (11): 4566–4571.

176 176 Ebert, K.H. and Schenk, G. (1968). Mechanisms of biopolymer growth: the formation of dextran and levan. Advances in Enzymology and Related Areas of Molecular Biology 30: 179–221.

177 177 van Oss, C.J. (1989). Energetics of cell-cell and cell-biopolymer interactions. Cell Biophysics 14 (1): 1–16.

178 178 Maciollek, A. and Ritter, H. (2014). One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer. Beilstein Journal of Nanotechnology 5: 380–385.

179 179 Chen, L., Li, J., Ye, Z., Sun, B., Wang, L., Chen, Y., Han, J., Yu, M., Wang, Y., Zhou, Q., Seidler, U., Tian, D., and Xiao, F. (2020). Anti-high mobility group Box 1 neutralizing-antibody ameliorates dextran sodium sulfate colitis in mice. Frontiers in Immunology 11: 585094.

180 180 Bonnaud, M., Weiss, J., and McClements, D.J. (2010). Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry 58 (17): 9770–9777.

181 181 Spyropoulos, F., Ding, P., Frith, W.J., Norton, I.T., Wolf, B., and Pacek, A.W. (2008). Interfacial tension in aqueous biopolymer-surfactant mixtures. Journal of Colloid and Interface Science 317 (2): 604–610.

182 182 Haghighatpanah, N., Mirzaee, H., Khodaiyan, F., Kennedy, J.F., Aghakhani, A., Hosseini, S.S., and Jahanbin, K. (2020). Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. International Journal of Biological Macromolecules 152: 305–313.

183 183 Ganeshkumar, M., Ponrasu, T., Raja, M.D., Subamekala, M.K., and Suguna, L. (2014). Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130: 64–71.

184 184 Shingel, K.I. (2004). Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydrate Research 339 (3): 447–460.

185 185 Morris, A., Hillenbrand, M., Finkelman, M., George, M.P., Singh, V., Kessinger, C., Lucht, L., Busch, M., McMahon, D., Weinman, R., Steele, C., Norris, K.A., and Gingo, M.R. (2012). Serum (1>3)-β-D-glucan levels in HIV-infected individuals are associated with immunosuppression, inflammation, and cardiopulmonary function. JAIDS Journal of Acquired Immune Deficiency Syndromes 61 (4): 462–468.

186 186 Araujo, D., Alves, V.D., Marques, A.C., Fortunato, E., Reis, M.A.M., and Freitas, F. (2020). Low temperature dissolution of yeast chitin-glucan complex and characterization of the regenerated polymer. Bioengineering (Basel) 7 (1).

187 187 Wang, H., Chen, G., Li, X., Zheng, F., and Zeng, X. (2020). Yeast beta-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food and Function 11 (12): 10386–10396.

188 188 Pornanek, P. and Phoemchalard, C. (2020). Dietary supplementation of beta-glucan-rich molasses yeast powder on antibody response to swine fever virus and hematology of starter-grower pigs. Tropical Animal Health and Production 53 (1): 43.

189 189 Huang, H., Liu, Y., and Liu, R. (2009). Sphingomonas sp.: an important microbial resource for biopolymer synthesis. Wei Sheng Wu Xue Bao 49 (5): 560–566.

190 190 Matyshevskaia, M.S., Gvozdiak, R.I., Maiko, I.I., Lipkes, M.I., and Dedusenko, G. (1979). Biopolymer produced by bacteria of the genus Xanthomonas and its use in the petroleum industry. Mikrobiologicheskii Zhurnal 41 (1): 88–92.

191 191 Tolstoguzov, V. (2002). Thermodynamic aspects of biopolymer functionality in biological systems, foods, and beverages. Critical Reviews in Biotechnology 22 (2): 89–174.

192 192 Zhong, J., Frases, S., Wang, H., Casadevall, A., and Stark, R.E. (2008). Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry 47 (16): 4701–4710.

193 193 Zhu, C., Lee, J.H., Raghavan, S.R., and Payne, G.F. (2006). Bioinspired vesicle restraint and mobilization using a biopolymer scaffold. Langmuir 22 (7): 2951–2955.

194 194 Recuenco, F.C., Kobayashi, K., Ishiwa, A., Enomoto-Rogers, Y., Fundador, N.G.V., Sugi, T., Takemae, H., Iwanaga, T., Murakoshi, F., Gong, H., Inomata, A., Horimoto, T., Iwata, T., and Kato, K. (2014). Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro. Scientific Reports 4 (1).

195 195 Ding, Y., Jiang, F., Chen, L., Lyu, W., Chi, Z., and Liu, C. (2020). An alternative hard capsule prepared with the high molecular weight pullulan and gellan: processing, characterization, and in vitro drug release. Carbohydrate Polymers 237: 116172.

196 196 Gadhave, D., Rasal, N., Sonawane, R., Sekar, M., and Kokare, C. (2020). Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: pharmacological and in vitro cytotoxicity studies. International Journal of Biological Macromolecules 16: 906–920.

197 197 Kozlowska, J., Prus-Walendziak, W., Stachowiak, N., Bajek, A., Kazmierski, L., and Tylkowski, B. (2020). Modification of collagen/gelatin/hydroxyethyl cellulose-based materials by addition of herbal extract-loaded microspheres made from gellan gum and xanthan gum. Materials (Basel) 13 (16): 3507.

198 198 Park, A., Choi, J.H., Lee, S., Been, S., Song, J.E., and Khang, G. (2020). Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates. Journal of Tissue Engineering and Regenerative Medicine 14 (11): 1592–1603.

199 199 Park, H., Kim, H., Kim, G.Y., Lee, M.Y., Kim, Y., and Kang, S. (2020). Enhanced biodegradation of hydrocarbons by Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads. Journal of Hazardous Materials 406: 124752.

200 200 Rukmanikrishnan, B., Ismail, F.R.M., Manoharan, R.K., Kim, S.S., and Lee, J. (2020). Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties. International Journal of Biological Macromolecules 148: 1182–1189.

201 201 Sriamornsak, P. (2011). Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery 8 (8): 1009–1023.

202 202 Manjunath, M., Gowda, D.V., Kumar, P., Srivastava, A., Osmani, R.A., and Shinde, C. (2016). Guar gum and its pharmaceutical and biomedical applications. Advanced Science, Engineering and Medicine 8 (8): 589–602.

203 203 Patel, S. and Goyal, A. (2015). Applications of natural polymer Gum Arabic: a review. International Journal of Food Properties 18 (5): 986–998.

204 204 Balasubramaniam, S., Lee, H.C., Lazan, H., Othman, R., and Ali, Z.M. (2005). Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides. Phytochemistry 66 (2): 153–163.

205 205 Teleman, A., Nordström, M., Tenkanen, M., Jacobs, A., and Dahlman, O. (2003). Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Research 338 (6): 525–534.

206 206 Pasale, S.K., Cerroni, B., Ghugare, S.V., and Paradossi, G. (2014). Multiresponsive Hyaluronan-p(NiPAAm) “Click”-linked hydrogels. Macromolecular Bioscience 14 (7): 1025–1038.

207 207 Enrione, J., Díaz-Calderón, P., Weinstein-Oppenheimer, C.R., Sánchez, E., Fuentes, M.A., Brown, D.I., Herrera, H., and Acevedo, C.A. (2013). Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Bioprocess and Biosystems Engineering 36 (12): 1947–1956.

208 208 Esmonde-White, K.A., Le Clair, S.V., Roessler, B.J., and Morris, M.D. (2008). Effect of conformation and drop properties on surface-enhanced Raman spectroscopy of dried biopolymer drops. Applied Spectroscopy 62 (5): 503–511.

209 209 Figallo, E., Flaibani, M., Zavan, B., Abatangelo, G., and Elvassore, N. (2007). Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnology Progress 23 (1): 210–216.

210 210 Geissler, E., Hecht, A.M., and Horkay, F. (2007). Scaling equations for a biopolymer in salt solution. Physical Review Letters 99 (26): 267801.

211 211 Naskar, B., Ghosh, S., Nagadome, S., Sugihara, G., and Moulik, S.P. (2011). Behavior of the amphiphile CHAPS alone and in combination with the biopolymer inulin in water and isopropanol water media. Langmuir 27 (15): 9148–9159.

212 212 Dhanapal, V. and Subramanian, K. (2014). Recycling of textile dye using double network polymer from sodium alginate and superabsorbent polymer. Carbohydrate Polymers 108: 65–74.

213 213 Sukhlaaied, W. and Riyajan, S.-A. (2013). Synthesis and properties of carrageenan grafted copolymer with poly(vinyl alcohol). Carbohydrate Polymers 98 (1): 677–685.

214 214 Abd alFattah Amara, A. (2008). Polyhydroyalkanoates: from basic research and molecular biology to application. IIUM Engineering Journal 9 (1): 37–73.

215 215 Williams, S.F.a. and Martin, D.P. (2002). Applications of PHAs in medicine and pharmacy. In: Biopolymers, Vol. 4, Polyesters III; Applications and Commercial Products (ed. Y. Doi and A. Steinbüchel), 91–127. Germany: Wiley-VCH.

216 216 Anderson, A.J. and Dawes, E.A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews 54 (4): 450–472.

217 217 Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., and Witholt, B. (1988). Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Applied and Environmental Microbiology 54 (12): 2924–2932.

218 218 de Koning, G.J.M., Kellerhals, M., van Meurs, C., and Witholt, B. (1997). A process for the recovery of poly(hydroxyalkanoates) from pseudomonads part 2: process development and economic evaluation. Bioprocess Engineering 17 (1): 15.

219 219 Lutke-Eversloh, T., Bergander, K., Luftmann, H., and Steinbuchel, A. (2001). Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2 (3): 1061–1065.

220 220 Lütke-Eversloh, T., Fischer, A., Remminghorst, U., Kawada, J., Marchessault, R.H., Bögershausen, A., Kalwei, M., Eckert, H., Reichelt, R., Liu, S.-J., and Steinbüchel, A. (2002). Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nature Materials 1 (4): 236–240.

221 221 Lütke-Eversloh, T. and Steinbüchel, A. (2003). Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis inRalstonia eutropha. FEMS Microbiology Letters 221 (2): 191–196.

222 222 Findlay, R.H. and White, D.C. (1983). Polymeric beta-hydroxyalkanoates from environmental samples and bacillus megaterium. Applied and Environmental Microbiology 45 (1): 71–78.

223 223 Byrom, D. (1987). Polymer synthesis by microorganisms: technology and economics. Trends in Biotechnology 5 (9): 246–250.

224 224 Jendrossek, D., Schirmer, A., and Schlegel, H.G. (1996). Biodegradation of polyhydroxyalkanoic acids. Applied Microbiology and Biotechnology 46 (5–6): 451–463.

225 225 Doi, Y. (1995). Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Macromolecular Symposia 98 (1): 585–599.

226 226 Marchessault, R.H. (1996). Tender morsels for bacteria: recent developments in microbial polyesters. Trends in Polymer Science 4: 163–168.

227 227 Gross, R.A., DeMello, C., Lenz, R.W., Brandl, H., and Fuller, R.C. (1989). The biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22 (3): 1106–1115.

228 228 Preusting, H., Nijenhuis, A., and Witholt, B. (1990). Physical characteristics of poly(3-hydroxyalkanoates) and poly(3-hydroxyalkenoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons. Macromolecules 23 (19): 4220–4224.

229 229 Son, H., Park, G., and Lee, S. (1996). Growth-associated production of poly-beta-hydroxybutyrate from glucose or alcoholic distillery wastewater by Actinobacillus sp. EL-9. Biotechnology Letters 18 (11): 1229–1234.

230 230 Kauffman, G.B. and Seymour, R.B. (1990). Elastomers: i. Natural rubber. Journal of Chemical Education 67 (5): 422.

231 231 Hocking, P.J. and Marchessault, R.H. (1994). Biopolyesters. In: Chemistry and Technology of Biodegradable Polymers (ed. G. Griffin), 48–96. Springer Netherlands.

232 232 Holmes, P.A. (1985). Applications of PHB – a microbially produced biodegradable thermoplastic. Physics in Technology 16 (1): 32–36.

233 233 Addison, C.J., Chu, S.H., and Reusch, R.N. (2004). Polyhydroxybutyrate-enhanced transformation of log-phase Escherichia coli. Biotechniques 37 (3): 376–378, 380, 382.

234 234 Knowles, J.C. (1993). Development of a natural degradable polymer for orthopaedic use. Journal of Medical Engineering and Technology 17 (4): 129–137.

235 235 Kunze, C., Freier, T., Kramer, S., and Schmitz, K.P. (2002). Anti-inflammatory prodrugs as plasticizers for biodegradable implant materials based on poly(3-hydroxybutyrate). Journal of Materials Science: Materials in Medicine 13 (11): 1051–1055.

236 236 Cheng, S., Chen, G.Q., Leski, M., Zou, B., Wang, Y., and Wu, Q. (2006). The effect of D,L-betahydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27 (20): 3758–3765.

237 237 Misra, S.K., Valappil, S.P., Roy, I., and Boccaccini, A.R. (2006). Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7 (8): 2249–2258.

238 238 Valappil, S.P., Misra, S.K., Boccaccini, A.R., and Roy, I. (2006). Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Review of Medical Devices 3 (6): 853–868.

239 239 van der Walle, G.A., de Koning, G.J., Weusthuis, R.A., and Eggink, G. (2001). Properties, modifications and applications of biopolyesters. Advances in Biochemical Engineering/Biotechnology 71: 263–291.

240 240 Wang, Y.W., Yang, F., Wu, Q., Cheng, Y.C., Yu, P.H., Chen, J., and Chen, G.Q. (2005). Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26 (7): 755–761.

241 241 Nebe, B., Forster, C., Pommerenke, H., Fulda, G., Behrend, D., Bernewski, U., Schmitz, K.P., and Rychly, J. (2001). Structural alterations of adhesion mediating components in cells cultured on poly β-hydroxy butyric acid. Biomaterials 22: 2425–2434.

242 242 Shishatskaya, I. and Volova, T.G. (2004). A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. Journal of Materials Science: Materials in Medicine 15 (8): 915–923.

243 243 Shishatskaya, I., Volova, T.G., Puzyr, A.P., Mogilnaya, O.A., and Efremov, S.N. (2004). Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. Journal of Materials Science: Materials in Medicine 15 (6): 719–728.

244 244 Shishatskaya, I., Volova, T.G., Gordeev, S.A., and Puzyr, A.P. (2005). Degradation of P(3HB) and P(3HB-co-3HV) in biological media. Journal of Biomaterials Science. Polymer Edition 16 (5): 643–657.

245 245 Shishatskaya, I., Khlusov, I.A., and Volova, T.G. (2006). A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. Journal of Biomaterials Science. Polymer Edition 17 (5): 481–498.

246 246 Shishatskaya, I., Voinova, O.N., Goreva, A.V., Mogilnaya, O.A., and Volova, T.G. (2008). Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine 19 (6): 2493–2502.

247 247 Tezcaner, A., Bugra, K., and Hasirci, V. (2003). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 24: 4573–4583.

248 248 Malm, T., Bowald, S., Karacagil, S., Bylock, A., and Busch, C. (1992). A new biodegradable patch for closure of atrial septal defect. Scandinavian Journal of Thoracic and Cardiovascular Surgery 26 (1): 9–14.

249 249 Malm, T., Bowald, S., Bylock, A., Saldeen, T., and Busch, C. (1992). Regeneration of pericardial tissue on absorbable polymer patches implanted into the pericardial sac. An immunohistochemical, ultrastructural and biochemical study in the sheep. Scandinavian Journal of Thoracic and Cardiovascular Surgery 26 (1): 15–21.

250 250 Malm, T., Bowald, S., Bylock, A., Busch, C., and Saldeen, T. (1994). Enlargement of the right ventricular outflow tract and the pulmonary artery with a new biodegradable patch in transannular position. European Surgical Research 26 (5): 298–308.

251 251 Cai, Z., Wang, L., Hou, X., and Cheng, G. (2002). Application of biodegradable polyhydroxybutyrate in medicine and tissue engineering. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19 (2): 306–309.

252 252 Kassab, A.C., Xu, K., Denkbas, E.B., Dou, Y., Zhao, S., and Piskin, E. (1997). Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. Journal of Biomaterials Science. Polymer Edition 8 (12): 947–961.

253 253 Chen, G.Q. and Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26 (33): 6565–6578.

254 254 Amara, A.A., Steinbuchel, A., and Rehm, B.H.A. (2002). In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Applied Microbiology and Biotechnology 59: 477–482.

255 255 Amara, A.A. and Rehm, B.H. (2003). Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochemical Journal 374 (Pt 2): 413–421.

256 256 Taguchi, S., Maehara, A., Takase, K., Nakahara, M., Nakamura, H., and Doi, Y. (2001). Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiology Letters 198 (1): 65–71.

257 257 Taguchi, S., Nakamura, H., Hiraishi, T., Yamato, I., and Doi, Y. (2002). In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. Journal of Biochemistry 131 (6): 801–806.

258 258 van Beilen, J.B. and Poirier, Y. (2007). Guayule and Russian Dandelion as alternative sources of natural rubber. Critical Reviews in Biotechnology 27 (4): 217–231.

259 259 van Beilen, J.B. and Poirier, Y. (2007). Prospects for biopolymer production in plants. In: Green Gene Technology (ed. A. Ficheter and C. Sautter), 133–151. Berlin Heidelberg: Springer.

260 260 Clark, J.E., Beegen, H., and Wood, H.G. (1986). Isolation of intact chains of polyphosphate from “Propionibacterium shermanii” grown on glucose or lactate. Journal of Bacteriology 168 (3): 1212–1219.

261 261 Van den Broek, P.J.A., De Bruijne, A.W., and Van Steveninck, J. (1987). The role of ATP in the control of H+-galactoside symport in the yeast Kluyveromyces marxianus. Biochemical Journal 242 (3): 729–734.

262 262 Tsiomenko, A.B., Lupashin, V.V., and Kulaev, I.S. (1987). Export of enzymes into culture medium by yeasts of saccharomyces genus. In: Extracellular Enzymes of Microorganisms (ed. J. Chaloupka), 205–208. US: Springer.

263 263 Babes, V. (1895). Beobachtungen über die metachromatischen Körperchen, Sporenbildung, Verzweigung, Kolben-und Kapselbildung pathogener Bakterien. Zeitschrift fur Hygiene und Infectionskrankheiten 20 (1): 412–437.

264 264 Schomburg, D. and Stephan, D.R. (1997). Dolichyl-diphosphate-polyphosphate phosphotransferase. In: Enzyme Handbook (ed. D. Schomburg and D.R. Stephan), 417–419. Berlin Heidelberg: Springer.

265 265 Segawa, S., Fujiya, M., Konishi, H., Ueno, N., Kobayashi, N., Shigyo, T., and Kohgo, Y. (2011). Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS ONE 6 (8): e23278.

266 266 Dedkova, E.N. and Blatter, L.A. (2014). Role of beta-hydroxybutyrate, its polymer poly-beta- hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Frontiers in Physiology 5: 260.

267 267 Seidlmayer, L., Blatter, L.A., Pavlov, E., and Dedkova, E.N. (2012). Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. Heart 97 (24): e8–e8.

268 268 Hattenschwilerr, S. and Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution 15 (6): 238–243.

269 269 Pena-Mendez, E.M., Havel, J., and Patocka, J. (2005). Humic substances – compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine 3 (1): 13–24.

270 270 Hemingway, R.W. (1998). Practical polyphenolics: from structure to molecular recognition and physiological action (Edited by Haslam E. University of Sheffield). New York, NY: Cambridge University Press. Journal of Natural Products 61 (11): 1454–1455.

271 271 Serrano, J., Puupponen-Pimiã, R., Dauer, A., Aura, A.-M., and Saura-Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition & Food Research 53 (S2): S310–S329.

272 272 Quideau, S.P., Deffieux, D., Douat-Casassus, C.L., and Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition 50 (3): 586–621.

273 273 Crozier, A., Jaganath, I.B., and Clifford, M.N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports 26 (8): 1001.

274 274 Schieber, A., Stintzing, F.C., and Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology 12 (11): 401–413.

275 275 Gruber, J.V., Lamoureux, B.R., Joshi, N., and Moral, L. (2000). Influence of cationic polysaccharides on polydimethylsiloxane (PDMS) deposition onto keratin surfaces from a surfactant emulsified system. Colloids and Surfaces B: Biointerfaces 19 (2): 127–135.

276 276 Djilas, S., Canadanovic-Brunet, J., and Cetkovic, G. (2009). By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly 15 (4): 191–202.

277 277 Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5): 727–747.

278 278 Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., and Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010 (0): bap024–bap024.

279 279 Collins, A.R. (2005). Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. The American Journal of Clinical Nutrition 81 (1): 261S–267S.

280 280 Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1): 230S–242S.

281 281 Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. European Journal of Pharmacology 545 (1): 51–64.

282 282 Hooper, L.V., Beranek, M.C., Manzella, S.M., and Baenziger, J.U. (1995). Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. Journal of Biological Chemistry 270 (11): 5985–5993.

283 283 Jensen, G.S., Wu, X., Patterson, K.M., Barnes, J., Carter, S.G., Scherwitz, L., Beaman, R., Endres, J.R., and Schauss, A.G. (2008). In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. Journal of Agricultural and Food Chemistry 56 (18): 8326–8333.

284 284 Frankel, E.N., German, J.B., Kinsella, J.E., Parks, E., and Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet 341 (8843): 454–457.

285 285 Fuhrman, B., Buch, S., Vaya, J., Belinky, P.A., Coleman, R., Hayek, T., and Aviram, M. (1997). Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. The American Journal of Clinical Nutrition 66 (2): 267–275.

286 286 Landbo, A.-K. and Meyer, A.S. (2008). Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices’ ability to inhibit lipid peroxidation of human LDL in vitro. International Journal of Food Science & Technology 36 (7): 727–735.

287 287 Guerrero, J.A., Navarro‐Nuñez, L., Lozano, M.L., Martínez, C., Vicente, V., Gibbins, J.M., and Rivera, J. (2007). Flavonoids inhibit the platelet TxA2signalling pathway and antagonize TxA2receptors (TP) in platelets and smooth muscle cells. British Journal of Clinical Pharmacology 64 (2): 133–144.

288 288 Nardini, M., Natella, F., and Scaccini, C. (2007). Role of dietary polyphenols in platelet aggregation. A Review of the Supplementation Studies. Platelets 18 (3): 224–243.

289 289 Spormann, T.M., Albert, F.W., Rath, T., Dietrich, H., Will, F., Stockis, J.P., Eisenbrand, G., and Janzowski, C. (2008). Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiology Biomarkers & Prevention 17 (12): 3372–3380.

290 290 Paiva-Martins, F.t., Fernandes, J.o., Rocha, S., Nascimento, H., Vitorino, R., Amado, F., Borges, F., Belo, L.s., and Santos-Silva, A. (2009). Effects of olive oil polyphenols on erythrocyte oxidative damage. Molecular Nutrition & Food Research 53 (5): 609–616.

291 291 Kuroda, Y. and Hara, Y. (1999). Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutation Research/Reviews in Mutation Research 436 (1): 69–97.

292 292 Cardador-Martinez, A., Castano-Tostado, E., and Loarca-Pina, G. (2002). Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B 1. Food Additives and Contaminants 19 (1): 62–69.

293 293 Yoda, Y., Hu, Z.-Q., Shimamura, T., and Zhao, W.-H. (2004). Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy 10 (1): 55–58.

294 294 Chung, K.-T., Wei, C.-I., and Johnson, M.G. (1998). Are tannins a double-edged sword in biology and health? Trends in Food Science & Technology 9 (4): 168–175.

295 295 Carrasco-Castilla, J., Hernández-Àlvarez, A.J., Jiménez-Martínez, C., Gutiérrez-López, G.F., and Dávila-Ortiz, G. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews 4 (4): 224–243.

296 296 Xia, E.-Q., Deng, G.-F., Guo, Y.-J., and Li, H.-B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences 11: 622–646.

297 297 Wei, H., Bowen, R., Cai, Q., Barnes, S., and Wang, Y. (1995). Antioxidant and antipromotional effects of the soybean isoflavone genistein. Experimental Biology and Medicine 208 (1): 124–130.

298 298 Surh, Y.-J., Hurh, Y.-J., Kang, J.-Y., Lee, E., Kong, G., and Lee, S.J. (1999). Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Letters 140 (1–2): 1–10.

299 299 Hou, D.-X., Fujii, M., Terahara, N., and Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology 2004 (5): 321–325.

300 300 Lutke-Eversloh, T., Bergander, K., Luftmann, H., and Steinbuchel, A. (2001). Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology (Reading) 147 (Pt 1): 11–19.

Biomolecules from Natural Sources

Подняться наверх