Читать книгу DNA Origami - Группа авторов - Страница 71

References

Оглавление

1 1 Hansma, P.K., Elings, V.B., Marti, O. et al. (1988). Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242: 209–216.

2 2 Hansma, H.G. (2001). Surface biology of DNA by atomic force microscopy. Annual Review of Physical Chemistry 52: 71–92.

3 3 Yang, J., Takeyasu, K., and Shao, Z. (1992). Atomic force microscopy of DNA molecules. FEBS Letters 301: 173–176.

4 4 Lyubchenko, Y.L., Gall, A.A., Shlyakhtenko, L.S. et al. (1992). Atomic force microscopy imaging of double stranded DNA and RNA. Journal of Biomolecular Structure & Dynamics 10: 589–606.

5 5 Hansma, H.G., Vesenka, J., Siegerist, C. et al. (1992). Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256: 1180–1184.

6 6 Hansma, H.G., Sinsheimer, R.L., Li, M.Q. et al. (1992). Atomic force microscopy of single‐ and double‐stranded DNA. Nucleic Acids Research 20: 3585–3590.

7 7 Allison, D.P., Bottomley, L.A., Thundat, T. et al. (1992). Immobilization of DNA for scanning probe microscopy. Proceedings of the National Academy of Sciences of the United States of America 89: 10129–10133.

8 8 Lyubchenko, Y.L., Gall, A.A., and Shlyakhtenko, L.S. (2014). Visualization of DNA and protein‐DNA complexes with atomic force microscopy. Methods in Molecular Biology 1117: 367–384.

9 9 Lyubchenko, Y.L., Jacobs, B.L., Lindsay, S.M. et al. (1995). Atomic force microscopy of nucleoprotein complexes. Scanning Microscopy, 9, 705–724; discussion 724–707.

10 10 Lyubchenko, Y.L. and Shlyakhtenko, L.S. (2016). Imaging of DNA and protein‐DNA complexes with atomic force microscopy. Critical Reviews in Eukaryotic Gene Expression 26: 63–96.

11 11 Winfree, E., Liu, F., Wenzler, L.A. et al. (1998). Design and self‐assembly of two‐dimensional DNA crystals. Nature 394: 539–544.

12 12 Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302.

13 13 Wei, B., Dai, M., and Yin, P. (2012). Complex shapes self‐assembled from single‐stranded DNA tiles. Nature 485: 623–626.

14 14 Ando, T., Kodera, N., Takai, E. et al. (2001). A high‐speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America 98: 12468–12472.

15 15 Ando, T., Uchihashi, T., and Scheuring, S. (2014). Filming biomolecular processes by high‐speed atomic force microscopy. Chemical Reviews 114: 3120–3188.

16 16 Rajendran, A., Endo, M., and Sugiyama, H. (2014). State‐of‐the‐art high‐speed atomic force microscopy for investigation of single‐molecular dynamics of proteins. Chemical Reviews 114: 1493–1520.

17 17 Endo, M. and Sugiyama, H. (2014). Single‐molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high‐speed atomic force microscopy. Accounts of Chemical Research 47: 1645–1653.

18 18 Yurke, B., Turberfield, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature 406: 605–608.

19 19 Yan, H., Zhang, X., Shen, Z. et al. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62–65.

20 20 Sherman, W.B. and Seeman, N.C. (2004). A precisely controlled DNA biped walking device. Nano Letters 4: 1801–1801.

21 21 Omabegho, T., Sha, R., and Seeman, N.C. (2009). A bipedal DNA Brownian motor with coordinated legs. Science 324: 67–71.

22 22 Douglas, S.M., Dietz, H., Liedl, T. et al. (2009). Self‐assembly of DNA into nanoscale three‐dimensional shapes. Nature 459: 414–418.

23 23 Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325: 725–730.

24 24 Nummelin, S., Shen, B., Piskunen, P. et al. (2020). Robotic DNA nanostructures. ACS Synthetic Biology 9: 1923–1940.

25 25 Andersen, E.S., Dong, M., Nielsen, M.M. et al. (2009). Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 459: 73–76.

26 26 Takenaka, T., Endo, M., Suzuki, Y. et al. (2014). Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chemistry 20: 14951–14954.

27 27 Ijas, H., Hakaste, I., Shen, B. et al. (2019). Reconfigurable DNA origami nanocapsule for pH‐controlled encapsulation and display of cargo. ACS Nano 13: 5959–5967.

28 28 Douglas, S.M., Bachelet, I., and Church, G.M. (2012). A logic‐gated nanorobot for targeted transport of molecular payloads. Science 335: 831–834.

29 29 Kuzuya, A., Sakai, Y., Yamazaki, T. et al. (2011). Nanomechanical DNA origami 'single‐molecule beacons' directly imaged by atomic force microscopy. Nature Communications 2: 449.

30 30 Marras, A.E., Zhou, L., Su, H.J. et al. (2015). Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences of the United States of America 112: 713–718.

31 31 Tomaru, T., Suzuki, Y., Kawamata, I. et al. (2017). Stepping operation of a rotary DNA origami device. Chemical Communications (Camb) 53: 7716–7719.

32 32 Wang, J., Yue, L., Li, Z. et al. (2019). Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities. Nature Communications 10: 4963.

33 33 Kuzuya, A., Watanabe, R., Yamanaka, Y. et al. (2014). Nanomechanical DNA origami pH sensors. Sensors (Basel) 14: 19329–19335.

34 34 Willner, E.M., Kamada, Y., Suzuki, Y. et al. (2017). Single‐molecule observation of the photoregulated conformational dynamics of DNA origami nanoscissors. Angewandte Chemie International Edition in English 56: 15324–15328.

35 35 Gerling, T., Wagenbauer, K.F., Neuner, A.M. et al. (2015). Dynamic DNA devices and assemblies formed by shape‐complementary, non‐base pairing 3D components. Science 347: 1446–1452.

36 36 Suzuki, Y., Kawamata, I., Mizuno, K. et al. (2020). Large deformation of a DNA‐origami nanoarm induced by the cumulative actuation of tension‐adjustable modules. Angewandte Chemie International Edition in English 59: 6230–6234.

37 37 Zhong, H. and Seeman, N.C. (2006). RNA used to control a DNA rotary nanomachine. Nano Letters 6: 2899–2903.

38 38 Chakraborty, B., Sha, R., and Seeman, N.C. (2008). A DNA‐based nanomechanical device with three robust states. Proceedings of the National Academy of Sciences of the United States of America 105: 17245–17249.

39 39 Kuzyk, A., Schreiber, R., Zhang, H. et al. (2014). Reconfigurable 3D plasmonic metamolecules. Nature Materials 13: 862–866.

40 40 Mao, C., Sun, W., Shen, Z. et al. (1999). A nanomechanical device based on the B‐Z transition of DNA. Nature 397: 144–146.

41 41 Lu, C.H., Cecconello, A., Elbaz, J. et al. (2013). A three‐station DNA catenane rotary motor with controlled directionality. Nano Letters 13: 2303–2308.

42 42 Asanuma, H., Liang, X., Nishioka, H. et al. (2007). Synthesis of azobenzene‐tethered DNA for reversible photo‐regulation of DNA functions: hybridization and transcription. Nature Protocols 2: 203–212.

43 43 Asanuma, H., Takarada, T., Yoshida, T. et al. (2001). Enantioselective incorporation of a into oligodeoxyribonucleotide for effective photoregulation of duplex formation. Angewandte Chemie International Edition in English 40: 2671–2673.

44 44 Yoshimura, Y. and Fujimoto, K. (2008). Ultrafast reversible photo‐cross‐linking reaction: toward in situ DNA manipulation. Organic Letters 10: 3227–3230.

45 45 Kamiya, Y. and Asanuma, H. (2014). Light‐driven DNA nanomachine with a photoresponsive molecular engine. Accounts of Chemical Research 47: 1663–1672.

46 46 Lohmann, F., Ackermann, D., and Famulok, M. (2012). Reversible light switch for macrocycle mobility in a DNA rotaxane. Journal of the American Chemical Society 134: 11884–11887.

47 47 Yang, Y., Tashiro, R., Suzuki, Y. et al. (2017). A photoregulated DNA‐based rotary system and direct observation of its rotational movement. Chemistry 23: 3979–3985.

48 48 Tashiro, R., Iwamoto, M., Morinaga, H. et al. (2015). Linking two DNA duplexes with a rigid linker for DNA nanotechnology. Nucleic Acids Research 43: 6692–6700.

49 49 Endo, M., Sugita, T., Rajendran, A. et al. (2011). Two‐dimensional DNA origami assemblies using a four‐way connector. Chemical Communications (Camb) 47: 3213–3215.

50 50 Liu, W., Zhong, H., Wang, R. et al. (2011). Crystalline two‐dimensional DNA‐origami arrays. Angewandte Chemie International Edition in English 50: 264–267.

51 51 Rajendran, A., Endo, M., Katsuda, Y. et al. (2011). Programmed two‐dimensional self‐assembly of multiple DNA origami jigsaw pieces. ACS Nano 5: 665–671.

52 52 Woo, S. and Rothemund, P.W. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry 3: 620–627.

53 53 Wang, P., Gaitanaros, S., Lee, S. et al. (2016). Programming self‐assembly of DNA origami honeycomb two‐dimensional lattices and plasmonic metamaterials. Journal of the American Chemical Society 138: 7733–7740.

54 54 Tikhomirov, G., Petersen, P., and Qian, L. (2017). Fractal assembly of micrometre‐scale DNA origami arrays with arbitrary patterns. Nature 552: 67–71.

55 55 Wagenbauer, K.F., Sigl, C., and Dietz, H. (2017). Gigadalton‐scale shape‐programmable DNA assemblies. Nature 552: 78–83.

56 56 Oishi, Y., Torii, Y., Kato, T. et al. (1997). Molecular patterning of a guanidinium/orotate mixed monolayer through molecular recognition with flavin adenine dinucleotide. Langmuir 13: 519–524.

57 57 Sun, X., Hyeon Ko, S., Zhang, C. et al. (2009). Surface‐mediated DNA self‐assembly. Journal of the American Chemical Society 131: 13248–13249.

58 58 Aghebat Rafat, A., Pirzer, T., Scheible, M.B. et al. (2014). Surface‐assisted large‐scale ordering of DNA origami tiles. Angewandte Chemie International Edition in English 53: 7665–7668.

59 59 Woo, S. and Rothemund, P.W. (2014). Self‐assembly of two‐dimensional DNA origami lattices using cation‐controlled surface diffusion. Nature Communications 5: 4889.

60 60 Kielar, C., Ramakrishnan, S., Fricke, S. et al. (2018). Dynamics of DNA origami lattice formation at solid‐liquid interfaces. ACS Applied Materials & Interfaces 10: 44844–44853.

61 61 Johnson‐Buck, A., Jiang, S., Yan, H. et al. (2014). DNA‐cholesterol barges as programmable membrane‐exploring agents. ACS Nano 8: 5641–5649.

62 62 Kocabey, S., Kempter, S., List, J. et al. (2015). Membrane‐assisted growth of DNA origami nanostructure arrays. ACS Nano 9: 3530–3539.

63 63 Czogalla, A., Kauert, D.J., Franquelim, H.G. et al. (2015). Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angewandte Chemie International Edition in English 54: 6501–6505.

64 64 Suzuki, Y., Endo, M., and Sugiyama, H. (2015). Lipid‐bilayer‐assisted two‐dimensional self‐assembly of DNA origami nanostructures. Nature Communications 6: 8052.

65 65 Mingeot‐Leclercq, M.P., Deleu, M., Brasseur, R. et al. (2008). Atomic force microscopy of supported lipid bilayers. Nature Protocols 3: 1654–1659.

66 66 Ramakrishnan, S., Subramaniam, S., Stewart, A.F. et al. (2016). Regular nanoscale protein patterns via directed adsorption through self‐assembled DNA origami masks. ACS Applied Materials & Interfaces 8: 31239–31247.

67 67 Suzuki, Y., Sugiyama, H., and Endo, M. (2018). Complexing DNA origami frameworks through sequential self‐assembly based on directed docking. Angewandte Chemie International Edition in English 57: 7061–7065.

68 68 Lin, T., Yan, J., Ong, L.L. et al. (2018). Hierarchical assembly of DNA nanostructures based on four‐way toehold‐mediated strand displacement. Nano Letters 18: 4791–4795.

69 69 Yang, Y., Endo, M., Hidaka, K. et al. (2012). Photo‐controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. Journal of the American Chemical Society 134: 20645–20653.

70 70 Yang, S., Liu, W., Nixon, R. et al. (2018). Metal‐ion responsive reversible assembly of DNA origami dimers: G‐quadruplex induced intermolecular interaction. Nanoscale 10: 3626–3630.

71 71 Yang, S., Liu, W., and Wang, R. (2019). Control of the stepwise assembly‐disassembly of DNA origami nanoclusters by pH stimuli‐responsive DNA triplexes. Nanoscale 11: 18026–18030.

72 72 Suzuki, Y., Endo, M., Yang, Y. et al. (2014). Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. Journal of the American Chemical Society 136: 1714–1717.

73 73 Kroener, F., Heerwig, A., Kaiser, W. et al. (2017). Electrical actuation of a DNA origami nanolever on an electrode. Journal of the American Chemical Society 139: 16510–16513.

74 74 Kopperger, E., List, J., Madhira, S. et al. (2018). A self‐assembled nanoscale robotic arm controlled by electric fields. Science 359: 296–301.

75 75 Lauback, S., Mattioli, K.R., Marras, A.E. et al. (2018). Real‐time magnetic actuation of DNA nanodevices via modular integration with stiff micro‐levers. Nature Communications 9: 1446.

76 76 Suzuki, Y., Sakai, N., Yoshida, A. et al. (2013). High‐speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Scientific Reports 3: 2131.

77 77 Yoshida, A., Sakai, N., Uekusa, Y. et al. (2018). Morphological changes of plasma membrane and protein assembly during clathrin‐mediated endocytosis. PLoS Biology 16: e2004786.

78 78 Fukuda, S., Uchihashi, T., Iino, R. et al. (2013). High‐speed atomic force microscope combined with single‐molecule fluorescence microscope. The Review of Scientific Instruments 84: 073706.

DNA Origami

Подняться наверх