Читать книгу Interventional Cardiology - Группа авторов - Страница 257

Interactive multiple choice questions are available for this chapter on www.wiley.com/go/dangas/cardiology References

Оглавление

1 1 Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991; 22: 1178–1181.

2 2 Brezinski ME, Tearney GJ, Bouma BE, et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. Am J Cardiol 1996; 77(1): 92–93.

3 3 Lowe HC, Narula J, Fujimoto JG, Jang I‐K. Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv 2011; 4(12): 1257–1270.

4 4 Raffel OC, Akasaka T, Jang I‐K. Cardiac optical coherence tomography. Heart 2008; 94(9): 1200–1210.

5 5 Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003; 11(18): 2183–2189.

6 6 Hebsgaard L, Christiansen EH, Holm NR. Calibration of intravascular optical coherence tomography as presented in peer reviewed publications. Int J Cardiol 2014; 171(1): 92–93.

7 7 Foin N, Mari JM, Nijjer S, et al. Intracoronary imaging using attenuationc ompensated optical coherence tomography allows better visualisation of coronary artery diseases. Cardiovasc Revasc Med 2013; 14(3): 139–143.

8 8 Van Soest G, Bosch JG, van der Steen AFW. Alignment of intravascular optical coherence tomography movies affected by non‐uniform rotation distortion. Procç SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 684721: 2008.

9 9 Van Soest G, Regar E, Goderie TPM, et al. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging 2011; 4(7): 810–813.

10 10 Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012; 59(12): 1058–1072.

11 11 Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2009; 2(11): 1035–1046.

12 12 Elahi S, Mancuso JJ, Milner TE, Feldman MD. Sunflower artifact in OCT. JACC Cardiovasc Imaging 2011; 4(11): 1220–1221.

13 13 Waller BF, Orr CM, Slack JD, et al. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques. Part I. Clin Cardiol 1992; 15(6): 451–457.

14 14 Fulton WFM. The Coronary Arteries: Arteriography, Microanatomy, and Pathogenesis of Obliterative Coronary Artery Disease. C.C. Thomas; 1965.

15 15 Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 2010; 31(4): 401–415.

16 16 Radu MD, Räber L, Garcia‐Garcia H, Serruys PW (eds) The Clinical Atlas of Intravascular Optical Coherence Tomography, 2013.

17 17 Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106(13): 1640–1645.

18 18 Manfrini O, Mont E, Leone O, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol 2006; 98(2): 156–159.

19 19 Van Soest G, Goderie T, Regar E, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt 2010; 15(1): 011105.

20 20 Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 2006; 97(12): 1713–1717.

21 21 Jang I‐K, Tearney GJ, MacNeill B, et al. in vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005; 111(12): 1551–1555.

22 22 Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336(18): 1276–1282.

23 23 Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 2006; 152(4): 755.e1–4.

24 24 Kubo T, Imanishi T, Kashiwagi M, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol 2010; 105(3): 318–322.

25 25 Kimura S, Kakuta T, Yonetsu T, et al. Clinical significance of echo signal attenuation on intravascular ultrasound in patients with coronary artery disease. Circ Cardiovasc Interv 2009; 2(5): 444–454.

26 26 Di Vito L, Agozzino M, Marco V, et al. Identification and quantification of macrophage presence in coronary atherosclerotic plaques by optical coherence tomography. Eur Heart J Cardiovasc Imaging 2015; 16(7): 807–813.

27 27 Tanaka A, Tearney GJ, Bouma BE. Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography. J Biomed Opt 2010; 15(1): 011104.

28 28 Falk E, Nakano M, Bentzon JF, et al. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 2013; 34(10): 719–728.

29 29 Vorpahl M, Nakano M, Virmani R. Small black holes in optical frequency domain imaging matches intravascular neoangiogenesis formation in histology. Eur Heart J 2010; 31(15): 1889.

30 30 Kitabata H, Tanaka A, Kubo T, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J Cardiol 2010; 105(12): 1673–1678.

31 31 Tian J, Hou J, Xing L, et al. Significance of intraplaque neovascularisation for vulnerability: optical coherence tomography study. Heart 2012; 98(20): 1504–1509.

32 32 Kato K, Yonetsu T, Kim SJ, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non‐acute coronary syndromes: a 3‐vessel optical coherence tomography study. Circ Cardiovasc Imaging 2012; 5(4): 433–440.

33 33 Chia S, Raffel OC, Takano M, et al. Association of statin therapy with reduced coronary plaque rupture: an optical coherence tomography study. Coron Artery Dis 2008; 19(4): 237–242.

34 34 Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrouscap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis 2009; 202(2): 491–497.

35 35 Hattori K, Ozaki Y, Ismail TF, et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter‐IVUS. JACC Cardiovasc Imaging 2012; 5(2): 169–177.

36 36 Komukai K, Kubo T, Kitabata H, et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography. J Am Coll Cardiol 2014; 64(21): 2207–2217.

37 37 Tian J, Hou J, Xing L, et al. Does neovascularization predict response to statin therapy? Optical coherence tomography study. Int J Cardiol 2012; 158(3): 469–470.

38 38 Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid‐lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291(9): 1071–1080.

39 39 Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high‐intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006; 295(13): 1556–1565.

40 40 Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 2011; 365(22): 2078–2087.

41 41 Sabatine MS, Giugliano RP, Keech AC, et al. FOURIER steering committee and investigators. Evolocumab and clinical Outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376:1713–22

42 42 Schwartz GG, Steg PG, Szarek M, et al. ODYSSEY OUTCOMES committees and investigators. Alirocumab and cardiovascular Outcomes after acute coronary syndrome. N Engl J Med. 2018; 379:2097–107.

43 43 Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin‐treated patients: the GLAGOV randomized clinical trial. JAMA. 2016; 316(22):2373–2384

44 44 Ino Y, Kubo T, Tanaka A, et al. Difference of culprit lesion morphologies between ST‐segment elevation myocardial infarction and non‐ST‐segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv 2011; 4(1): 76–82.

45 45 Shimamura K, Ino Y, Kubo T, et al. Difference of ruptured plaque morphology between asymptomatic coronary artery disease and non‐ST elevation acute coronary syndrome patients: an optical coherence tomography study. Atherosclerosis 2014; 235(2): 532–537.

46 46 Otsuka F, Joner M, Prati F, et al. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 2014; 11(7): 379–389.

47 47 Jia H, Abtahian F, Aguirre AD, et al. in vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013; 62: 1748–1758.

48 48 Sugiyama T, Yamamoto E, Bryniarski K,. Nonculprit plaque characteristics in patients with acute coronary syndrome caused by plaque erosion vs plaque rupture: a 3‐vessel optical coherence tomography study erosion vs rupture nonculprit plaque morphology in acute coronary syndrome erosion vs rupture nonculprit plaque morphology in acute coronary syndrome. JAMA Cardiol 2018; 3:207–214.

49 49 Dai J, Xing L, Jia H, et al. in vivo predictors of plaque erosion in patients with ST‐segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study. Eur Heart J 2018; 39:2077–2085.

50 50 Prati F, Uemura S, Souteyrand G, et al. OCT‐based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging 2013; 6(3): 283–287.

51 51 Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS‐CLASS study. JACC Cardiovasc Imaging 2013; 6(10): 1095–1104.

52 52 Habara M, Nasu K, Terashima M, et al. Impact of frequency‐domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv 2012; 5(2): 193–201.

53 53 Liu Y, Shimamura K, Kubo T, et al. Comparison of longitudinal geometric measurement in human coronary arteries between frequency‐domain optical coherence tomography and intravascular ultrasound. Int J Cardiovasc Imaging 2014; 30(2): 271–277.

54 54 Prati F, Di Vito L, Biondi‐Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision‐making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto‐Optimisation of Percutaneous Coronary Intervention (CLI‐OPCI) study. EuroIntervention 2012; 8(7): 823–829.

55 55 Burzotta F, Leone AM, Aurigemma C, et al. Fractional Flow Reserve or Optical Coherence Tomography to Guide Management of Angiographically Intermediate Coronary Stenosis: A Single‐Center Trial. JACC Cardiovasc Interv. 2020 Jan 13; 13(1):49–58. doi: 10.1016/j.jcin.2019.09.034.

56 56 Ali ZA, Maehara A, Ge´ne´reux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: oPTIMIZE PCI): a randomised controlled trial. The Lancet 2016; 388:2618–2628.

57 57 Kubo T, Shinke T, Okamura T, et al. Optical frequency domain imaging vs intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one‐year angiographic and clinical results. Eur Heart J 2017; 38:3139–3147.

58 58 Buccheri S, Franchina G, Romano S, et al. Clinical outcomes following intravascular imaging‐guided versus coronary angiography‐guided percutaneous coronary intervention with stent implantation: a systematic review and Bayesian network meta‐analysis of 31 studies and 17 882 patients. JACC Cardiovasc Interv 2017; 10:2488–2498.

59 59 Moussa I, Moses J, Di Mario C, et al. Does the specific intravascular ultrasound criterion used to optimize stent expansion have an impact on the probability of stent restenosis? Am J Cardiol 1999; 83:1012–7.

60 60 Kang SJ, Ahn JM, Song H, et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ Cardiovasc Interv 2011; 4: 562–9.

61 61 Doi H, Maehara A, Mintz GS, et al. Impact of post‐intervention minimal stent area on 9‐month follow‐up patency of paclitaxel‐eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. J Am Coll Cardiol Intv 2009; 2:1269–75.

62 62 Song HG, Kang SJ, Ahn JM, et al. Intravascular ultrasound assessment of optimal stent area to prevent in‐stent restenosis after zotarolimus‐, everolimus‐, and sirolimus‐eluting stent implantation. Catheter Cardiovasc Interv 2014; 83:873–8.

63 63 Choi SY, Maehara A, Cristea E, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS‐AMI) substudy. Am J Cardiol 2012; 109:455–60.

64 64 Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus‐eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 2005; 45: 995–8.

65 65 Liu X, Doi H, Maehara A, et al. A volumetric intravascular ultrasound comparison of early drug eluting stent thrombosis versus restenosis. J Am Coll Cardiol Intv 2009; 5:428–34.

66 66 Choi SY, Witzenbichler B, Maehara A, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS‐AMI) substudy. Circ Cardiovasc Interv 2011; 4:239–47.

67 67 Soeda T, Uemura S, Park SJ, et al. Incidence and clinical significance of poststent optical coherence tomography findings: one‐year followup study from a multicenter registry. Circulation 2015; 132:1020–9.

68 68 Secco GG, Foin N, Viceconte N, et al. Optical coherence tomography for guidance of treatment of in‐stent restenosis with cutting balloons. EuroIntervention 2011; 7(7): 828–834.

69 69 Mattesini A, Pighi M, Konstantinidis N, et al. Optical coherence tomography in bioabsorbable stents: mechanism of vascular response and guidance of stent implantation. Minerva Cardioangiol 2014; 62(1): 71–82.

70 70 Hong M‐K, Mintz GS, Lee CW, et al. Late stent malapposition after drug‐eluting stent implantation: an intravascular ultrasound analysis with long‐term follow‐up. Circulation 2006; 113(3): 414–419.

71 71 Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug‐eluting stent implantation. Circulation 2007; 115(18): 2426–2434.

72 72 Hassan AKM, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug‐eluting stent compared with bare‐metal stent implantation and associates with late stent thrombosis. Eur Heart J 2010; 31(10): 1172–1180.

73 73 Im E, Kim BK, Ko YG, et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drugeluting stent implantation. Circ Cardiovasc Interv 2014; 7(1): 88–96.

74 74 Gutiérrez‐Chico JL, Wykrzykowska J, Nüesch E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv 2012; 5(1): 20–9, S1–8.

75 75 Adriaenssens T, Joner M, Godschalk T, et al. Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort (PRESTIGE) Investigators. Optical coherence tomography findings in patients with coronary stent thrombosis: a report of the PREvention of Late Stent Thrombosis by an Interdisciplinary Global European Effort (PRESTIGE) Consortium. Circulation 2017; 136:1007–1021.

76 76 Souteyrand G, Amabile N, Mangin L, et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 2016; 37: 1208–1216.

77 77 Taniwaki M, Radu MD, Zaugg S, et al. Mechanisms of very late drug‐eluting stent thrombosis assessed by optical coherence tomography. Circulation 2016; 133:650–660.

78 78 Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug‐eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 2007; 115(18): 2435–2441.

79 79 Joner M, Finn AV, Farb A, et al. Pathology of drug‐eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006; 48(1): 193–202.

80 80 Gutiérrez‐Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer‐coated zotarolimus‐eluting stent vs a fluoropolymer‐coated everolimuseluting stent at 13‐month follow‐up: an optical coherence tomography substudy from the RESOLUTE All Comers trial. Eur Heart J 2011; 32(19): 2454–2463.

81 81 Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart 2009; 95(23): 1913–1919.

82 82 Gonzalo N, Serruys PW, Okamura T, et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol 2011; 150(2): 151–155.

83 83 Tyczynski P, Ferrante G, Moreno‐Ambroj C, et al. Simple versus complex approaches to treating coronary bifurcation lesions: direct assessment of stent strut apposition by optical coherence tomography. Rev española Cardiol 2010; 63(8): 904–914.

84 84 Viceconte N, Tyczynski P, Ferrante G, et al. Immediate results of bifurcational stenting assessed with optical coherence tomography. Catheter Cardiovasc Interv 2013; 81(3): 519–528.

85 85 Lassen JF, Holm NR, Stankovic G, et al. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings. EuroIntervention 2014; 10(5): 545–560.

86 86 Alegría‐Barrero E, Foin N, Chan PH, et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention 2012; 8(2): 205–213.

87 87 Okamura T, Onuma Y, García‐García HM, et al. 3‐Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. JACC Cardiovasc Interv 2010; 3(8): 836–844.

88 88 Okamura T, Yamada J, Nao T, et al. Three‐dimensional optical coherence tomography assessment of coronary wire re‐crossing position during bifurcation stenting. EuroIntervention 2011; 7(7): 886–887.

89 89 Farooq V, Serruys PW, Heo JH, et al. New insights into the coronary artery bifurcation hypothesis‐generating concepts utilizing 3‐dimensional optical frequency domain imaging. JACC Cardiovasc Interv 2011; 4(8): 921–931.

90 90 Farooq V, Okamura T, Onuma Y, et al. Unravelling the complexities of the coronary bifurcation: is this raising a few eyebrows? EuroIntervention 2012; 7(10): 1133–1141.

91 91 Farooq V, Gogas BD, Okamura T, et al. Three‐dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application. Eur Heart J 2013; 34(12): 875–885.

92 92 Okamura T, Onuma Y, Yamada J, et al. 3D optical coherence tomography: new insights into the process of optimal rewiring of side branches during bifurcational stenting. EuroIntervention 2014; 10(8): 907–915.

93 93 Ferrante G, Kaplan AV, Di Mario C. Assessment with optical coherence tomography of a new strategy for bifurcational lesion treatment: the Tryton Side‐Branch Stent. Catheter Cardiovasc Interv 2009; 73(1): 69–72.

94 94 Beohar N, Kaltenbach LA, Wojdyla D, et al. Trends in Usage and Clinical Outcomes of Coronary Atherectomy: A Report From the National Cardiovascular Data Registry Cath PCI Registry. Circ Cardiovasc Interv. 2020 Feb; 13(2).

95 95 Shlofmitz E, Jeremias A, Shlofmitz R, Ali ZA. Lesion Preparation with Orbital Atherectomy. Interv Cardiol. 2019 Nov 18; 14(3):169–173

96 96 Mattesini A, Nargi G, Mattelini A et al. Intravascular imaging to guide lithotripsy in concentric and eccentric calcific coronary lesions. Cardiovascular Revascularization Medicine. Accepted for publication

97 97 Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus‐eluting stent: should we be cautious? Circulation 2004; 109(6): 701–705.

98 98 Templin C, Meyer M, Müller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J 2010; 31(14): 1792–1801.

99 99 Malle C, Tada T, Steigerwald K, et al. Tissue characterization after drug‐eluting stent implantation using optical coherence tomography. Arterioscler Thromb Vasc Biol 2013; 33(6): 1376–1383.

100 100 Papayannis AC, Cipher D, Banerjee S, Brilakis ES. Optical coherence tomography evaluation of drug‐eluting stents: a systematic review. Catheter Cardiovasc Interv 2013; 81(3): 481–487.

101 101 Shlofmitz E, Iantorno M, Waksman R. Restenosis of Drug‐Eluting Stents. Circ. Cardiovasc. Interv. 2019, 12, e007023.

102 102 Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in‐stent restenosis. J Am Coll Cardiol 2014; 63(24): 2659–2673.

103 103 Gutiérrez‐Chico JL, Alegría‐Barrero E, Teijeiro‐Mestre R, et al. Optical coherence tomography: from research to practice. Eur Heart J Cardiovasc Imaging 2012; 13(5): 370–384.

104 104 Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J 2009; 158(2): 284–293.

105 105 Takano M, Yamamoto M, Inami S, et al. Appearance of lipid‐laden intima and neovascularization after implantation of bare‐metal stents extended late‐phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol 2009; 55(1): 26–32.

106 106 Kilickesmez K, Dall’Ara G, Rama‐Merchan JC, et al. Optical coherence tomography characteristics of in‐stent restenosis are different between first and second generation drug eluting stents. IJC Heart Vessel 2014; 3: 68–74.

107 107 Kang S‐J, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in‐stent neoatherosclerosis after drug‐eluting stent implantation. Circulation 2011; 123(25): 2954–2963.

108 108 Miyazaki S, Hiasa Y, Takahashi T, et al. in vivo optical coherence tomography of very late drug‐eluting stent thrombosis compared with late in‐stent restenosis. Circ J 2012; 76(2): 390–398.

109 109 Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography‐based calcium scoring system to predict stent underexpansion. EuroIntervention 2018; 13:e2182–9.

110 110 Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus‐eluting coronary stent system (ABSORB): Two‐year outcomes and results from multiple imaging methods. The Lancet 2009; 373(9667): 897–910.

111 111 Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus‐eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12‐month clinical and imaging outcomes. J Am Coll Cardiol 2011; 58(15): 1578–1588.

112 112 Onuma Y, Serruys PW, Perkins LEL, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus‐eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography. Circulation 2010; 122(22): 2288–2300.

113 113 Montone RA, Niccoli G, De Marco F, et al. Temporal Trends in Adverse Events After Everolimus‐Eluting Bioresorbable Vascular Sca_old Versus Everolimus‐Eluting Metallic Stent Implantation: A Meta‐Analysis of Randomized Controlled Trials. Circulation 2017, 135: 2145–2154.

114 114 Zhang XL, Zhu QQ, Kang LN, et al. Mid‐ and Long‐Term Outcome Comparisons of Everolimus‐Eluting Bioresorbable Sca_olds Versus Everolimus‐Eluting Metallic Stents: A Systematic Review and Meta‐analysis. Ann. Intern. Med. 2017, 167: 642–654.

115 115 Arroyo D, Gendre G, Schukraft S, et al. Comparison of everolimus‐ and biolimus‐eluting coronary stents with everolimus‐eluting bioresorbable vascular sca_olds: Two‐year clinical outcomes of the EVERBIO II trial. Int. J. Cardiol. 2017, 243: 121–125.

116 116 Katagiri Y, Onuma Y. Three‐year follow‐up of the randomised comparison between an everolimus‐eluting bioresorbable sca_old and a durable polymer everolimus‐eluting metallic stent in patients with ST‐segment elevation myocardial infarction (TROFI II trial). EuroIntervention 2018, 14: e1224–e1226.

117 117 Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus‐eluting Absorb bioresorbable sca_olds vs everolimus‐eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur. Heart J. 2015, 36: 3332–3342.

118 118 Xu B, Yang Y, Han Y, et al. Comparison of everolimus‐eluting bioresorbable vascular scaffolds and metallic stents: Three‐year clinical outcomes from the ABSORB China randomised trial. EuroIntervention 2018, 14: e554–e561.

119 119 Arroyo D, Gendre, G, Schukraft, S, et al. Comparison of everolimus‐ and biolimus‐eluting coronary stents with everolimus‐eluting bioresorbable vascular sca_olds: Two‐year clinical outcomes of the EVERBIO II trial. Int. J. Cardiol. 2017, 243, 121–125.

120 120 Mattesini A, Secco GG, Dall’Ara G, et al. ABSORB biodegradable stents versus second‐generation metal stents: A comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc. Interv. 2014, 7, 741–750.

121 121 Dempsey RJ, Davis DG, Buice RG, Lodder RA. Biological and medical applications of near‐infrared spectrometry. Appl Spectrosc OSA 1996; 50(2): 18A–34A.

122 122 Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter‐based near‐infrared spectroscopy system. JACC Cardiovasc Imaging 2008; 1(5): 638–648.

123 123 Waxman S, Dixon SR, L’Allier P, et al. in vivo validation of a catheter‐based near‐infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2009; 2(7): 858–868.

124 124 Davies MJ, Richardson PD, Woolf N, et al. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69(5): 377–381.

125 125 Madder RD, Smith JL, Dixon SR, Goldstein JA. Composition of target lesions by near‐infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv 2012; 5(1): 55–61.

126 126 Madder RD, Goldstein JA, Madden SP, et al. Detection by near‐infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST‐segment elevation myocardial infarction. JACC Cardiovasc Interv 2013; 6(8): 838–846.

127 127 Oemrawsingh RM, Cheng JM, García‐García HM, et al. Near‐infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol 2014; 64(23): 2510–2518.

128 128 Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near‐infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019; 394:1629–1637.

129 129 Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid‐core plaques by intracoronary near‐infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 2011; 4(5): 429–437.

130 130 Raghunathan D, Abdel‐Karim A‐RR, Papayannis AC, et al. Relation between the presence and extent of coronary lipid core plaques detected by near‐infrared spectroscopy with postpercutaneous coronary intervention myocardial infarction. Am J Cardiol 2011; 107(11): 1613–1618.

131 131 Stone G. TCT Congress 2014. Washington DC, USA. CANARY: Evaluation of the relationship between intravascular ultrasound and near infrared spectroscopy lipid parameters with periprocedural myonecrosis, with an integrated randomized trial of distal protection to prevent PCI‐related myocardial infarction. Washington DC; 2014.

132 132 Brilakis ES, Abdel‐Karim A‐RR, Papayannis AC, et al. Embolic protection device utilization during stenting of native coronary artery lesions with large lipid core plaques as detected by near‐infrared spectroscopy. Catheter Cardiovasc Interv 2012; 80(7): 1157–1162.

133 133 Dixon SR, Grines CL, Munir A, et al. Analysis of target lesion length before coronary artery stenting using angiography and near‐infrared spectroscopy versus angiography alone. Am J Cardiol 2012; 109(1): 60–66.

134 134 Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short‐term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid‐lowering therapy). J Am Coll Cardiol 2013; 62(1): 21–29.

135 135 Yoo H, Kim JW, Shishkov M, et al. Intra‐arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 2011; 17(12): 1680–1684.

136 136 Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging 2013; 6(12): 1327–1341.

137 137 Jaffer FA, Verjans JW. Molecular imaging of atherosclerosis: clinical state‐of‐theart. Heart 2014; 100(18): 1469–1477.

138 138 Jaffer FA, Vinegoni C, John MC, et al. Real‐time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 2008; 118(18): 1802–1809.

139 139 Jaffer FA, Calfon MA, Rosenthal A, et al. Two‐dimensional intravascular near‐infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent‐induced vascular injury. J Am Coll Cardiol 2011; 57(25): 2516–2526.

140 140 Vinegoni C, Botnaru, I, Aikawa E, et al. Indocyanine green enables near‐infrared fluorescence imaging of lipid‐rich, inflamed atherosclerotic plaques. Sci. Transl. Med. 2011, 3.

141 141 Kim S, Lee MW, Kim TS et al. Intracoronary dual‐modal optical coherence tomography‐near infrared fluorescence structural‐molecular imaging with a clinical dose of indocyanine green for the assessment of high‐risk plaques and stent‐associated inflammation in a beating coronary artery. Eur Heart J 2016, 37, 1 October, 2833–2844.

142 142 Kim JB; Park K; Ryu J; et al. Intravascular optical imaging of high‐risk plaques in vivo by targeting macrophage mannose receptors. Sci. Rep. 2016, 6, 22608.

143 143 Hara T, Ughi GJ, McCarthy JR, et al. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur. Heart J. 2017, 38, 447–455.

144 144 Calfon Press MA, Mallus G, Rosenthal A, et al. Everolimus‐eluting stents stabilize plaque inflammation in vivo: assessment by intravascular fluorescence molecular imaging. Eur. Heart J. Cardiovasc. Imaging, 2017, 18, 510–518.

145 145 Chowdhury MM, Singh K, Albagdhadi MS,et al. Paclitaxel Drug‐Coated Balloon Angioplasty Suppresses Progression and Inflammation of Experimental Atherosclerosis in Rabbits. Journal of the American College of Cardiology: Basic to Translational Science. (in press).

146 146 Bozhko D, Osborn EA, Rosenthal A, et al. Quantitative intravascular biological fluorescence‐ultrasound imaging of coronary and peripheral arteries in vivo. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1253–1261.

147 147 Ughi GJ. Next‐Generation Intravascular Imaging: Dual‐Modality OCT and Near‐Infrared Auto‐Fluorescence (NIRAF) for the Simultaneous Acquisition of Microstructural and Molecular/Chemical Information Within the Coronary Vasculature: Early Human Clinical Experience. Abstract Presentation in TCT Congress 2014. Washington DC, USA. Washington DC: 2014.

148 148 Htun NM, Chen YC, Lim B,et al. Near‐infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for highrisk atherosclerotic plaques. Nat Commun, 2017; 8:75.

149 149 Lee S, Lee MW, Cho HS, et al. Fully integrated high‐speed intravascular optical coherence tomography/near‐infrared fluorescence structural/molecular imaging in vivo using a clinically available near‐infrared fluorescence‐emitting indocyanine green to detect inflamed lipid‐rich atherom. Circ Cardiovasc Interv 2014; 7(4): 560–569.

150 150 Verjans JW, Osborn EA, Ughi GJ, et al. Targeted near‐infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of indocyanine green. J Am Coll Cardiol Img. Published online August17, 2016. doi:10.1016/j.jcmg. 2016.01.034.

151 151 Van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor‐specific fluorescence imaging in ovarian cancer by folate receptor‐α targeting: first inhuman results. Nat Med 2011; 17(10): 1315–1319.

Interventional Cardiology

Подняться наверх