Читать книгу Diatom Microscopy - Группа авторов - Страница 12
1
Investigation of Diatoms with Optical Microscopy
ОглавлениеShih-Ting Lin1, Ming-Xin Lee2 and Guan-Yu Zhuo1,2*
1Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
2Institute of New Drug Development, China Medical University, Taichung, Taiwan
Abstract
Diatoms are eukaryotic microalgae occurring in the water column as phytoplankton and on the ocean bed as benthic microalgae. Diatoms are similar to plants in the fact that they use photosynthesis, but differ in terms of evolutionary classification. More than 10,000 diatom species have been formally described, based primarily on the unique patterning of their silica shells. Over the last two decades, diatoms have attracted considerable attention for their potential use in synthesizing bio-functional materials due to the advantages of low production cost, prevention of using toxic chemicals and producing hazardous waste and intricate 3D hierarchical structures applicable for photonic applications, biosensors, catalysis, adsorption, and drug delivery systems. All such applications require a comprehensive understanding of the diatom structure, from the microscale to the nanoscale. Optical imaging provides spatial resolution at the sub-micrometer scale without harming the specimens. Image post-processing and reconstruction also make it possible to render the structure of samples in 3D via optical sectioning. In this chapter, we explore the various facets of optical microscopy within the context of diatom research and the applicability of this work to eco-environmental science and biomedicine. In the following sections, we respectively address light microscopy, fluorescence microscopy, confocal laser scanning microscopy, multiphoton microscopy, and super-resolution optical microscopy.
Keywords: Light microscopy, phase contrast microscopy, differential inteference contrast microscopy, darkfield microscopy, fluorescence microscopy, confocal microscopy, multiphoton microscopy, super-resolution optical microscopy