Читать книгу The Digital Agricultural Revolution - Группа авторов - Страница 65

References

Оглавление

1. Adams, R.M., Hurd, B.H., Lenhart, S., Leary, N., Effects of global climate change on agriculture: an interpretative review. Clim. Res., 11, 1, 19–30, 1998.

2. Patel, P., Agriculture drones are finally cleared for takeoff [News]. IEEE Spectr., 53, 11, 13–14, 2016.

3. Tokekar, P., Vander Hook, J., Mulla, D., Isler, V., Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Rob., 32, 6, 1498–1511, 2016.

4. Alsalam, B.H.Y., Morton, K., Campbell, D., Gonzalez, F., Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture, in: 2017 IEEE Aerospace Conference, pp. 1–12, p. IEEE, 2017.

5. Gevaert, C.M., Suomalainen, J., Tang, J., Kooistra, L., Generation of spectral temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 6, 3140–3146, 2015.

6. Gómez-Candón, D., De Castro, A.I., López-Granados, F., Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric., 15, 1, 44–56, 2014.

7. Sarle, W.S., Neural networks and statistical models, Proceedings of the Nineteenth Annual SAS Users Group International Conference, pp. 1538–1550, 1994.

8. Hsu, K.L., Gupta, H.V., Sorooshian, S., Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res., 31, 10, 2517–2530, 1995.

9. Zou, J., Han, Y., So, S.S., Overview of artificial neural networks, in: Artificial Neural Networks, pp. 14–22, 2008.

10. Lent, R., Azevedo, F.A., Andrade-Moraes, C.H., Pinto, A.V., How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci., 35, 1, 1–9, 2012.

11. Wang, J., Tsapakis, I., Zhong, C., A space–time delay neural network model for travel time prediction. Eng. Appl. Artif. Intell., 52, 145–160, 2016.

12. Demuth, H., Beale, M., Hagan, M., Neural Network Toolbox User’s Guide, The MathWorks, Inc, Natick, MA, USA, 2017.

13. Park, J., Yi, D., Ji, S., A Novel Learning Rate Schedule in Optimization for Neural Networks and It’s Convergence. Symmetry, 12, 660, 2020.

14. Mohamed, Z.E., Using the artificial neural networks for prediction and validating solar radiation. J. Egypt. Math. Soc., 27, 1, 1–13, 2019.

15. Garg, B., Kirar, N., Menon, S., Sah, T., A performance comparison of different back propagation neural networks methods for forecasting wheat production. CSI Trans. ICT, 4, 2-4, 305–311, 2016.

16. Maladkar, K., 6 Types of Artificial Neural Networks Currently Being Used in Machine Learning, analyticsindia, 2019. [Online]. Available: https://www.analyticsindiamag.com/..

17. Park, S., Im, J., Park, S., Yoo, C., Han, H., Rhee, J., Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sens., 10, 3, 447, 2018.

18. Zhang, M., Lin, H., Wang, G., Sun, H., Fu, J., Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting Lake Area, China. Remote Sens., 10, 11, 1840, 2018.

19. Wang, M., Wang, J., Chen, L., Mapping Paddy Rice Using Weakly Supervised Long Short-Term Memory Network with Time Series Sentinel Optical and SAR Images. Agriculture, 10, 10, 483, 2020.

20. Wu, Y. and Xu, L., Crop Organ Segmentation and Disease Identification Based on Weakly Supervised Deep Neural Network. Agronomy, 9, 11, 737, 2019.

21. Pourdarbani, R., Sabzi, S., García-Amicis, V.M., García-Mateos, G., Molina-Martínez, J.M., Ruiz-Canales, A., Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9, 11, 672, 2019.

22. Li, Y. and Chao, X., ANN-Based Continual Classification in Agriculture. Agriculture, 10, 5, 178, 2020.

23. Zhang, M., Lin, H., Wang, G., Sun, H., Fu, J., Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting Lake Area, China. Remote Sens., 10, 11, 1840, 2018.

24. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett., 14, 5, 778–782, 2017.

25. Sun, Z., Di, L., Fang, H., Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. Int. J. Remote Sens., 40, 2, 593–614, 2019.

26. Garg, B., Kirar, N., Menon, S., Sah, T., A performance comparison of different back propagation neural networks methods for forecasting wheat production. CSI Trans. ICT, 4, 2-4, 305–311, 2016.

27. Ghazi, M.M., Yanikoglu, B., Aptoula, E., Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing, 235, 228–235, 2017.

28. Xie, C., Wang, R., Zhang, J., Chen, P., Dong, W., Li, R., Chen, H., Multilevel learning features for automatic classification of field crop pests. Comput. Electron. Agric., 152, 233–241, 2018.

29. Koirala, A., Walsh, K.B., Wang, Z., Anderson, N., Deep Learning for Mango (Mangiferaindica) Panicle Stage Classification. Agronomy, 10, 1, 143, 2020.

30. Zhu, M., Liu, S., Xia, Z., Wang, G., Hu, Y., Liu, Z., Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture, 10, 8, 318, 2020.

31. Sharma, N., Chakrabarti, A., Balas, V.E., Advances in Intelligent Systems and Computing, vol. 1016, pp. 311–324, Springer, Singapore, 2020.

32. Liu, S., Peng, Y., Xia, Z., Hu, Y., Wang, G., Zhu, A.-X., Liu, Z., The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors, 19, 5127, 2019.

33. Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., Venturini, G., A survey on image-based insect classification. Pattern Recognit., 65, 273–284, 2017.

34. Wang, J., Lin, C., Ji, L., Liang, A., A new automatic identification system of insect images at the order level. Knowl. Based Syst., 33, 102–110, 2012.

35. Ferentinos, K., Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric., 145, 311–318, 2018.

36. Lu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y., Identification of rice diseases using deep convolutional neural networks. Neurocomputing, 267, 378–384, 20172017.

37. Knoll, F.J., Czymmek, V., Harders, L.O., Hussmann, S., Real-time classification of weeds in organic carrot production using deep learning algorithms. Comput. Electron. Agric., 167, 105097, 2019.

38. Przybylak, A., Kozłowski, R., Osuch, E., Osuch, A., Rybacki, P., Przygodzinski, P., Quality Evaluation of Potato Tubers Using Neural Image Analysis Method. Agriculture, 10, 112, 2020.

39. Li, Y. and Yang, J., Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric., 169, 105240, 2020.

40. Chatterjee, S., Dey, N., Sen, S., Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications. Sustain. Comput. Inform. Syst., 28, 100279, 2018.

41. Almomani, F., Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel, 280, 118573, 2020.

42. Abraham, E.R., dos Reis, J.G.M., Colossetti, A.P., de Souza, A.E., Toloi, R.C.,Neural Network System to Forecast the Soybean Exportation on Brazilian Port of Santos. Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, pp. 83–90, 2017.

43. Abraham, E.R., Mendes dos Reis, J.G., Vendrametto, O., Oliveira Costa Neto, P.L.D., Carlo Toloi, R., Souza, A.E.D., Oliveira Morais, M.D., Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. Agriculture, 10, 10, 475, 2020.

44. Liu, G., Yang, X., Li, M., An Artificial Neural Network Model for Crop Yield Responding to Soil Parameters, in: Advances in Neural Network, vol. 3498, pp. 1017–1021, 2020.

45. García-Martínez, H., Flores-Magdaleno, H., Ascencio-Hernández, R., Khalil-Gardezi, A., Tijerina-Chávez, L., Mancilla-Villa, O.R., Vázquez-Pena, M.A., Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture, 10, 7, 277, 2020.

46. Fieuzal, R., Marais Sicre, C., Baup, F., Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf., 57, 14–23, 20172017.

47. Michelon, G.K., Menezes, P.L., de Bazzi, C.L., Jasse, E.P., Magalhães, P.S.G., Borges, L.F., Artificial neural networks to estimate the productivity of soybeans and corn by chlorophyll readings. J. Plant Nutr., 41, 1285–1292, 2018.

48. Olson, D., Chatterjee, A., Franzen, D.W., Day, S.S., Relationship of Drone-Based Vegetation Indices with Corn and Sugarbeet Yields. Agron. J., 111, 2545–2557, 2019.

49. Khaki, S., Khalilzadeh, Z., Wang, L., Predicting yield performance of parents in plant breeding: A neural collaborative filtering approach. PloS One, 15, 5, e0233382, 2020.

50. Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., et al., Random forests for global and regional crop yield predictions. PloS One, 11, e0156571, 2016.

51. Krupavathi, K., Raghu Babu, M., Mani, A., Parasad, P.R.K., Edukondal, L., Seed to Seed: Application of Remote Sensing in Complete Monitoring of Sugarcane Crop at Regional Level, in: Research Trends in Agriculture Sciences, vol. 25, pp. 35–59, Akinik publications, Delhi, India, 2020.

52. Ferencz, C., Bognár, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., Molnár, G., Pásztor, S., Steinbach, P., Székely, B., Ferencz, O.E., FerenczÁrkos, I., Crop yield estimation by satellite remote sensing. Int. J. Remote Sens., 25, 4113–4149, 2004.

53. Prasad, A.K., Chai, L., Singh, R.P., Kafatos, M., Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf., 8, 1, 26–33, 2006.

54. Singh, R. A. N. D. H. I. R., Semwal, D.P., Rai, A., Chhikara, R.S., Small area estimation of crop yield using remote sensing satellite data. Int. J. Remote Sens., 23, 1, 49–56, 2002.

55. Quarmby, N.A., Milnes, M., Hindle, T.L., Silleos, N., The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int. J. Remote Sens., 14, 2, 199–210, 1993.

56.Unganai, L.S. and Kogan, F.N., Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sens. Environ., 63, 3, 219–232, 1998.

57. Zhou, X., Zheng, H.B., Xu, X.Q., He, J.Y., Ge, X.K., Yao, X., Cheng, T., Zhu, Y., Cao, W.X., Tian, Y.C., “Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens., 130, 246–255, 2017.

58. Bastiaanssen, W.G. and Ali, S., A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ., 94, 3, 321–340, 2003.

59. Sapkota, T.B., Jat, M.L., Jat, R.K., Kapoor, P., Stirling, C., Yield estimation of food and non-food crops in smallholder production systems, in: Methods for measuring greenhouse gas balances and evaluating mitigation options in smallholder agriculture, pp. 163–174, 2016.

60. Hooda, R.S., Yadav, M., Kalubarme, M.H., Wheat production estimation using remote sensing data: An Indian experience, in: Workshop Proceedings: Remote Sensing Support to Crop Yield Forecast and Area Estimates, Stresa, Italy, vol. 30, pp. 85–89, 2006.

61. Kumhalova, J., Zemek, F., Novak, P., Brovkina, O., Mayerovaa, M., Use of Landsat images for yield evaluation within a small plot. Plant Soil Environ., 60, 11, 501–506, 2014.

62. Kaul, M., Hill, R.L., Walthall, C., Artificial neural networks for corn and soybean yield prediction. Agric. Syst., 85, 1, 1–18, 2005.

63. Jiang, D., Yang, X., Clinton, N., Wang, N., An artificial neural network model for estimating crop yields using remotely sensed information. Int. J. Remote Sens., 25, 9, 1723–1732, 2004.

64. Patel, N.R., Bhattacharjee, B., Mohammed, A.J., Tanupriya, B., Saha, S.K., Remote sensing of regional yield assessment of wheat in Haryana, India. Int.J. Remote Sens., 27, 19, 4071–4090, 2006.

65. Sims, D.A., Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sens. Environ., 103, 3, 289–303, 2005.

66. Peng, Z., Hu, M., Liu, Y., Application of RS and GIS Technique to Estimate Regional Water-saving Potentiality, 2007.

67. Singh, R.K. and Prajneshu, Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield. Agric. Econ. Res. Rev., 21, 1, 152–156, 2008.

68. Poblete-Echeverría, C., Espinace, D., Sepúlveda-Reyes, D., Zúñiga, M., Sanchez, M., Analysis of crop water stress index (CWSI) for estimating stem water potential in grapevines: Comparison between natural reference and baseline approaches, in: VIII International Symposium on Irrigation of Horticultural Crops, vol. 1150, pp. 189–194, 2015.

69. Gowda, P.H., Jose, L., Paul, D.C., Steve, R.C., Terry, A.E., Judy, H., Tolk, A., ET mapping for agricultural water management: present status and challenges. Irrig. Sci., 26, 23–237, 2008.

70. Wart, J.V., Kersebaum, K.C., Peng, S., Milner, M., Cassman., K.G., Estimating crop yield potential at regional to national scales. Field Crops Res., 143, 34–4, 2013.

71. Sirisha, A., Raghuwanshi, N.S., Mishra, A., Tiwari, M.K., Evapotranspiration Modeling Using Second-Order Neural Networks. J. Hydrol. Eng., 19, 6, 1131–1140, 2014.

72. Martí, P. and Gasque, M., Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric. Water Manage., 97, 7, 939–955, 2010.

73. Tabari, H., Marofi, S., Sabziparvar, A.A., Estimation of daily pan evaporation using artificial neural network and multivariate nonlinear regression. Irrig. Sci., 28, 5, 399–406, 2010.

74. Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., Pruitt, W.O., Estimating evapotranspiration using artificial neural network. J. Irrig. Drain. Eng., 128, 4, 224–233, 2002.

75. Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Comput. Electron. Agric., 47, 2, 149–161, 2005.

76. Prasad, A.K., Chai, L., Ramesh, P.S., Kafatos, M., Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf., 8, 26–33, 2006.

77. Simoes, M.D., Rocha, S.J.V., Lamparelli, R.A.C., Spectral variables, growth analysis and yield of sugarcane. Sci. Agric., 62, 3, 199–207, 2005.

* Corresponding author: krupareddy572@gmail.com

The Digital Agricultural Revolution

Подняться наверх