Читать книгу Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics - Группа авторов - Страница 11
Preface Introduction
ОглавлениеThe novel applications of Big Data Analytics and machine intelligence in biomedical and healthcare sector can be regarded as an emerging field in computer science, medicine, biology application, natural environmental engineering, and pattern recognition. The use of various Data Analytics and intelligence techniques are nowadays successfully implemented in many healthcare sectors. Biomedical and Health Informatics is a new era that brings tremendous opportunities and challenges due to easily available plenty of biomedical data. Machine learning presenting tremendous improvement in accuracy, robustness, and cross-language generalizability over conventional approaches. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant biomedical, and healthcare data. Earlier, it was common requirements to have a domain expert to develop a model for biomedical or healthcare; but now the patterns are learned automatically for prediction. Due to the rapid advances in intelligent algorithms have established the growing significance in healthcare data analytics. The IoT focuses to the common idea of things that is recognizable, readable, locatable, controllable, and addressable via the Internet. Intelligent Learning aims to provide computational methods for accumulating, updating and changing knowledge in the intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In Future Big data analytics has the impending capability to change the way we work and live. With the influence and the development of the Big Data, IoT concept, the need for AI (Artificial Intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent system generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Intelligent systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics etc.
This book covers the latest advances and developments in health informatics, data mining, machine learning and artificial intelligence, fields which to a great extent will play a vital role in improving human life. All the researchers and practitioners will be highly benefited those are working in field of biomedical, health informatics, Big Data Analytics, IoT and Machine Learning. This book would be a good collection of state-of-the-art approaches for Big Data and Intelligent based biomedical and health related applications. It will be very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book would be very useful because there is no book in the market which provides a good collection of state-of-the-art methods of Big Data, machine learning and IoT in Biomedical and Health Informatics. Various models for biomedical and health informatics is recently emerged and very unmatured field of research in biomedical and healthcare. This book would be very useful because there is no book in the market which provides a good collection of state-of-the-art methods of for Big data analytics based models for healthcare.