Читать книгу Isotopic Constraints on Earth System Processes - Группа авторов - Страница 44
REFERENCES
Оглавление1 Beck P., Chaussidon, M., Barrat, J. A., Gillet, Ph., & Bohn, M. (2006). Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites. Geochimica et Cosmochimica Acta, 70, 4813–4825. doi: 10.1016/j.gca.2006.07.025
2 Bourg, I. C., Richter, F. M., Christensen, J. N., & Sposito, G. (2010). Isotopic mass‐dependence of metal cation diffusion coefficients in liquid water. Geochimica et Cosmochimica Acta, 74, 2249–2256. https://doi.org/10.1016/j.gca.2010.01.024
3 Bowen, N. L. (1921). Diffusion in silicate melts. Journal of Geology, 29, 295–317. https://doi.org/10.1086/622784
4 Chapman, S., & Dootson, M. A. (1917). A note on thermal diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33, 248–253. https://doi.org/10.1080/14786440308635635
5 Chopra, R., Richter, F. M., & Watson, E. B. (2012). Isotope fractionation by chemical diffusion in natural settings and in their laboratory analogues. Geochimica et Cosmochimica Acta, 88, 1–18. https://doi.org/10.1016/j.gca.2012.03.039
6 Clayton, R. N., Hinton, R. W., & Davis A. M. (1988). Isotopic variations in the rock‐forming elements in meteorites. Philosophical Transactions of the Royal Society of London A, 325, 483–501. https://doi.org/10.1098/rsta.1988.0062
7 Cooper, A. R. (1968). The use and limitations of the concept of an effective binary diffusion coefficient for multicomponent diffusion. In: J. B. Wachtman and A. D. Franklin (eds.), Mass Transport in Oxides, NBS Special Publication 296, 79–84.
8 Davis, A. M., Hashimoto, A., Clayton, R. N., & Mayeda, T. K. (1990). Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655–658. https://doi.org/10.1038/347655a0
9 de Groot, S. R., & Mazur, P. (1962). Non‐Equilibrium Thermodynamics. Dover.
10 Dohmen, R., Kasemann, S. A., Coogan, L. A., & Chakraborty, S. (2010). Diffusion of Li in olivine. Part 1: Experimental observations and a multiple species diffusion model. Geochimica et Cosmochimica Acta, 74, 274–292. https://doi.org/10.1016/j.gca.2009.10.016
11 Enskog, D. (1917). Kinetische Theorie der Vorgaenge in maessig verduennten Gasen. I. Allgemeiner Teil, Uppsala.
12 Fedkin, A. V., Grossman, L., Humayun, M., Simon, S. B., & Campbell, A. J. (2015). Condensates from vapor made by impacts between metal‐, silicate‐rich bodies: Comparison with metal and chondrules in CB chondrites. Geochimica et Cosmochimica Acta, 164, 236–261. https://doi.org/10.1016/j.gca.2015.05.022
13 Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., Alard, O., et al. (2003). Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium‐isotope ratio measurements. Journal of Analytical Atomic Spectrometry, 18, 1352–1356. https://doi.org/10.1039/B309273A
14 Goel, G., Zhang, L., Lacks, D. J., & Van Orman, J. A. (2012). Isotope fractionation by diffusion in silicate melts: Insights from molecular dynamics simulations. Geochimica et Cosmochimica Acta, 93, 205–213. https://doi.org/10.1016/j.gca.2012.07.008
15 Grossman, L., Ebel, D. S., Simon, S. B., Davis, A. M., Richter, F. M., & Parsad, N. M. (2000). Major element chemical and isotopic composition of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochimica et Cosmochimica Acta, 64, 2879–2894. https://doi.org/10.1016/S0016‐7037(00)00396‐3
16 Guo, C., & Zhang, Y. (2018). Multicomponent diffusion in basaltic melts at 1350°C. Geochimica et Cosmochimica Acta, 228, 190–204. https://doi.org/10.1016/j.gca.2018.02.043
17 Hashimoto, A. (1999). Chemical and isotopic fractionations in the primordial nebula. Planet. People, 4, 266–282.
18 Holycross, M. E., Watson, E. B., Richter, F. M., & Villeneuve, J. (2018). Diffusive fractionation of Li isotopes in wet, highly silicic melts. Geochemical Perspectives Letters, 6, 39–42. doi: 10.7185/geochemlet.1807
19 Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K., & Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71, 202–218. https://doi.org/10.1016/j.gca.2006.06.1611
20 Knight, K. B., Kita, N. T., Mendybaev, R. A., Richter, F. M., Davis, A. M., & Valley, J. W. (2009). Si isotope fractionation of CAI‐like vacuum evaporation residues. Geochimica et Cosmochimica Acta, 73, 6390–6401. https://doi.org/10.1016/j.gca.2009.07.008
21 Kyser, T. K., Lesher, C. E., & Walker, D. (1998). The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contributions to Mineralogy and Petrology, 133, 373–381. https://doi.org/10.1007/s004100050459
22 Lesher, C. E., & Walker, D. (1986). Solution properties of silicate liquids from thermal diffusion experiments. Geochimica et Cosmochimica Acta, 50, 1397–1411. https://doi.org/10.1016/0016‐7037(86)90313‐3
23 Liang, Y., Richter, F. M., Davis, A.M., & Watson, E. B. (1996a). Diffusion in silicate melts: I. Self‐diffusion in CaO‐A2O3‐Si02 at 1500°C and 1 GPa. Geochimica et Cosmochimica Acta, 60, 4353–4367. https://doi.org/10.1016/S0016‐7037(96)00288‐8
24 Liang, Y., Richter, F. M., & Watson, E. B. (1996b). Diffusion in silicate melts: II. Multicomponent diffusion in CaO‐A2O3‐Si02 at 1500°C and 1 GPa. Geochimica et Cosmochimica Acta, 60, 5021–5035. https://doi.org/10.1016/S0016‐7037(96)00352‐3
25 Liang, Y., Richter, F. M., & Chamberlin, L. (1997). Diffusion in silicate melts: III. Empirical models for multicomponent diffusion. Geochimica et Cosmochimica Acta, 61, 5295–5312. https://doi.org/10.1016/S0016‐7037(97)00301‐3
26 Oeser, M., Dohmen, R., Horn, I., Schuth, S., & Weyer, S. (2015). Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochimica et Cosmochimica Acta, 154, 130–150. https://doi.org/10.1016/j.gca.2015.01.025
27 Onsager, L. (1945). Theories and problems of liquid diffusion. Annals of the New York Academy of Science, 46, 241–265. 10.1111/j.1749‐6632.1945.tb36170.x
28 Parkinson, I. J., Hammond, S. J., James, R. H., & Rogers, N. W. (2007). High‐temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, 257, 609–621. https://doi.org/10.1016/j.epsl.2007.03.023
29 Richter, F. M., Chaussidon, M., Mendybaev, R., & Kite, E. (2016). Reassessing the cooling rate and geologic setting of Martian meteorites MIL 03346 and NWA 817. Geochimica et Cosmochimica Acta, 182, 1–23. https://doi.org/10.1016/j.gca.2016.02.020
30 Richter, F. M., Chaussidon, M., Watson, E. B., Mendybaev, R., & Homolova, V. (2017). Lithium isotopic fractionation in minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219, 124–142. https://doi.org/10.1016/j.gca.2017.09.001
31 Richter, F. M., Dauphas, N., & Teng, F.‐Z. (2009a). Non‐traditional fractionation of non‐traditional isotopes by chemical and Soret diffusion. Chemical Geology, 258, 92–103. https://doi.org/10.1016/j.chemgeo.2008.06.011
32 Richter, F. M., Davis, A. M., Ebel, D. S., & Hashimoto, A. (2002). Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal history. Geochimica et Cosmochimica Acta, 66, 521–540. https://doi.org/10.1016/S0016‐7037(01)00782‐7
33 Richter, F. M., Davis, A. M., DePaolo, D. L., & Watson, E. B. (2003). Isotope fractionation between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67, 3905–3923. https://doi.org/10.1016/S0016‐7037(03)00174‐1
34 Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M., & Wadhwa, M. (2007). Elemental and isotopic fractionation of Type B CAI‐like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 5544–5564. https://doi.org/10.1016/j.gca.2007.09.005
35 Richter, F. M., Liang, Y., & Davis, A. M. (1999). Isotope fractionation by diffusion in molten oxides. Geochimica et Cosmochimica Acta, 63, 2853–2861. https://doi.org/10.1016/S0016‐7037(99)00164‐7
36 Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio, N. C., & Beloso Jr., A. D. (2006b). Kinetic isotope fractionation during diffusion of ionic species in water. Geochimica et Cosmochimica Acta, 70, 277–289. https://doi.org/10.1016/j.gca.2005.09.016
37 Richter, F. M., Mendybaev, R. A., & Davis, A. M. (2006a). Conditions in the protoplanetary disk as seen by refractory inclusions in meteorites. Meteoritics and Planetary Science, 41, 83–93. doi: 10.1111/J.1945‐5100.2006.TB00194.X
38 Richter, F. M., Watson, E. B., Mendybaev, R., Dauphas, N., Georg, B., Watkins, J., & Valley, J. (2009b). Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73, 4250–4263. https://doi.org/10.1016/j.gca.2009.04.011
39 Richter, F. M., Watson, E. B., Chaussidon, M., Mendybaev, R. A., Christensen, J. N., & Qiu, L. (2014a). Isotope fractionation of Li and K in silicate liquids by Soret diffusion. Geochimica et Cosmochimica Acta, 138, 136–145. https://doi.org/10.1016/j.gca.2014.04.012
40 Richter, F. M., Watson, B., Chaussidon, M., Mendybaev, R., & Ruscitto, D. (2014b). Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126, 352–370. https://doi.org/10.1016/j.gca.2013.11.008
41 Richter, F. M., Watson, E. B., Mendybaev, R. A., Teng, F‐Z., & Janney, P. E. (2008). Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 72, 206–220. https://doi.org/10.1016/j.gca.2007.10.016
42 Sio, C. K., Dauphas, N., Teng, F.‐Z., Chaussidon, M., Helz, R. T., & Roskosz, M. (2013). Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochimica et Cosmochimica Acta, 123, 302–321. https://doi.org/10.1016/j.gca.2013.06.008
43 Sio, C. K., Roskosz, M., Dauphas, N., Neil, R., Bennett, N. R., Mock, T., & Shahar, A. (2018). The isotope effect for Mg‐Fe interdiffusion in olivine and 1 its dependence on crystal orientation, composition and temperature. Geochimica et Cosmochimica Acta, 239, 463–480. https://doi.org/10.1016/j.gca.2018.06.024
44 Soret, C. (1879). Sur l’etat d’equilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohene dont deux parties sont portees a des temperatures differentes. Archives des Sciences Physiques et Naturelles, 2, 48.
45 Stolper, E. M. (1982). Crystallization sequences of Ca–Al‐rich inclusions from Allende: An experimental study. Geochimica et Cosmochimica Acta, 46, 2159–2180. https://doi.org/10.1016/0016‐7037(82)90192‐2
46 Stolper, E., & Paque, J. M. (1986). Crystallization sequences of calcium‐aluminum–rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochimica et Cosmochimica Acta, 50, 1785–1806. https://doi.org/10.1016/0016‐7037(86)90139‐0
47 Teng, F‐Z., McDonough, W. F., Rudnick, R. L., & Walker, R. J. (2006). Diffusion‐driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243, 701–710. https://doi.org/10.1016/j.epsl.2006.01.036
48 Thomas, J. B., & Watson, E. B. (2014). Diffusion and partitioning of magnesium in quartz grain boundaries. Contributions to Mineralogy and Petrology, 168, 1–12. https://doi.org/10.1007/s00410‐014‐1068‐5
49 Tsuchiyama, A., Kawamura, K., Nakao, T., & Uyeda, C. (1994). Isotopic effects on diffusion in MgO melt simulated by the molecular dynamics (MD) method and implications for isotopic mass fractionation in magmatic systems. Geochimica et Cosmochimica Acta, 58, 3013–3021. https://doi.org/10.1016/0016‐7037(94)90175‐9
50 Tyrell, H. J. V. (1961). Diffusion and Heat in Liquids. Butterworths, London, pp. 329.
51 Watkins, J. M., DePaolo, D. J., Huber, C., & Ryerson, F. J. (2009). Liquid composition‐dependence of calcium isotope fractionation during diffusion in molten silicates. Geochimica et Cosmochimica Acta, 73, 7341–7359. https://doi.org/10.1016/j.gca.2009.09.004
52 Watkins, J. M., DePaolo, D. J., Ryerson, F. J., & Peterson, B. T. (2011). Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions. Geochimica et Cosmochimica Acta, 75, 3103–3118. https://doi.org/10.1016/j.gca.2011.03.002
53 Watkins, J. M., Liang, Y., Richter, F., Ryerson, F. J., & DePaolo, D. J. (2014). Diffusion of multi‐isotopic chemical species in molten silicates. Geochimica et Cosmochimica Acta, 139, 313–326. https://doi.org/10.1016/j.gca.2014.04.039
54 Watkins, J. M., DePaolo, D. J., & Watson, E. B. (2017). Kinetic fractionation of non‐traditional stable isotopes by diffusion and crystal growth reactions. Reviews in Mineralogy and Geochemistry, 82, 85–125. https://doi.org/10.2138/rmg.2017.82.4
55 Watson, E. B., Wark, D. A., Price, J. D., & Van Orman, J. A. (2002). Mapping the thermal structure of solid‐media pressure assemblies. Contributions to Mineralogy and Petrology, 142, 640–652. https://doi.org/10.1007/s00410‐001‐0327‐4
56 Watson, H. C., Richter, F., Liu, A., & Huss, G. R. (2016). Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites. Earth and Planetary Science Letters, 451, 159–167. https://doi.org/10.1016/j.epsl.2016.06.030
57 Wimpenny, J., Marks, N., Knight, K., Rolison, J. M., Borg, L., Eppich, G., et al. (2019). Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochimica et Cosmochimica Acta, 259, 391–411. https://doi.org/10.1016/j.gca.2019.06.016
58 Xiao, Y., Zhang, H.‐F., Deloule, E., Su, B.‐X., Tang, Y.‐J., Sakyi, P., et al. (2015). Large lithium isotopic variations in minerals from peridotite xenoliths from Eastern North China Craton. Journal of Geology, 123, 79–94. https://doi.org/10.1086/680222