Читать книгу Isotopic Constraints on Earth System Processes - Группа авторов - Страница 65
REFERENCES
Оглавление1 Antonelli, M., Mittal, T., McCarthy, A., Tripoli, B., Watkins, J., & DePaolo, D. (2019a). Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems. Proceedings of the National Academy of Sciences, 116, 20315–20321. https://doi.org/10.1073/pnas.1908921116
2 Antonelli, M. A., Schiller, M., Schauble, E. A., Mittal, T., DePaolo, D. J., Chacko, T., et al. (2019b). Kinetic and equilibrium Ca isotope effects in high‐T rocks and minerals. Earth and Planetary Science Letters, 517, 71–82. https://doi.org/10.1016/j.epsl.2019.04.013
3 Barrat, J.‐A., Chaussidon, M., Bohn, M., Gillet, P., Göpel, C., & Lesourd, M. (2005). Lithium behavior during cooling of a dry basalt: An ion‐microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochimica et Cosmochimica Acta, 69(23), 5597–5609. https://doi.org/10.1016/j.gca.2005.06.032
4 Beck, P., Chaussidon, M., Barrat, J.‐A., Gillet, P., & Bohn, M. (2006). Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochimica et Cosmochimica Acta, 70(18), 4813–4825. https://doi.org/10.1016/j.gca.2006.07.025
5 Bourg, I. C., Richter, F. M., Christensen, J. N., & Sposito, G. (2010). Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochimica et Cosmochimica Acta, 74(8), 2249–2256. https://doi.org/10.1016/j.gca.2010.01.024
6 Chakraborty, S., Dingwell, D. B., & Rubie, D. C. (1995). Multicomponent diffusion in ternary silicate melts in the system K2O‐Al2O3‐SiO2: II. Mechanisms, systematics, and geological applications. Geochimica et Cosmochimica Acta, 59(2), 265–277. https://doi.org/10.1016/0016‐7037(94)00283‐R
7 Chen, L.‐M., Teng, F.‐Z., Song, X.‐Y., Hu, R.‐Z., Yu, S.‐Y., Zhu, D., & Kang, J. (2018). Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion. Earth and Planetary Science Letters, 487, 74–83. https://doi.org/10.1016/j.epsl.2018.01.036
8 Chopra, R., Richter, F. M., Watson, E. B., & Scullard, C. R. (2012). Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochimica et Cosmochimica Acta, 88, 1–18. https://doi.org/10.1016/j.gca.2012.03.039
9 Christensen, J. N., Qin, L., Brown, S. T., & DePaolo, D. J. (2018). Potassium and calcium isotopic fractionation by plants (soybean [Glycine max], rice [Oryza sativa], and wheat [Triticum aestivum]). ACS Earth and Space Chemistry, 2(7), 745–752. https://doi.org/10.1021/acsearthspacechem.8b00035
10 Cooper, A. R. (1968). The use and limitations of the concept of an effective binary diffusion coefficient for multi‐component diffusion. Mass Transport in Oxides, 296, 79–84.
11 Dauphas, N. (2007). Diffusion‐driven kinetic isotope effect of Fe and Ni during formation of the widmanstätten pattern. Meteoritics & Planetary Science, 42(9), 1597–1613. https://doi.org/10.1111/j.1945‐5100.2007.tb00593.x
12 Dauphas, N., Teng, F.‐Z., & Arndt, N. T. (2010). Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochimica et Cosmochimica Acta, 74(11), 3274–3291. https://doi.org/10.1016/j.gca.2010.02.031
13 Dingwell, D. B. (1990). Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chemical Geology, 82, 209–216. https://doi.org/10.1016/0009‐2541(90)90082‐I
14 Gallagher, K., & Elliott, T. (2009). Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth and Planetary Science Letters, 278(3–4), 286–296. https://doi.org/10.1016/j.epsl.2008.12.009
15 Gao, Y., Snow, J. E., Casey, J. F., & Yu, J. (2011). Cooling‐induced fractionation of mantle Li isotopes from the ultraslow‐spreading Gakkel Ridge. Earth and Planetary Science Letters, 301(1–2), 231–240. https://doi.org/10.1016/j.epsl.2010.11.003
16 Goel, G., Zhang, L., Lacks, D. J., & Van Orman, J. A. (2012). Isotope fractionation by diffusion in silicate melts: Insights from molecular dynamics simulations. Geochimica et Cosmochimica Acta, 93, 205–213. https://doi.org/10.1016/j.gca.2012.07.008
17 Guo, C., & Zhang, Y. (2016). Multicomponent diffusion in silicate melts: SiO2–TiO2–Al2O3–MgO–CaO–Na2O–K2O system. Geochimica et Cosmochimica Acta, 195, 126–141. https://doi.org/10.1016/j.gca.2016.09.003
18 Guo, C., & Zhang, Y. (2018). Multicomponent diffusion in basaltic melts at 1350°C. Geochimica et Cosmochimica Acta, 228, 190–204. https://doi.org/10.1016/j.gca.2018.02.043
19 Holycross, M., Watson, E., Richter, F., & Villeneuve, J. (2018). Diffusive fractionation of Li isotopes in wet, highly silicic melts. Geochemical Perspectives Letters, 6, 39–42. doi: 10.7185/geochemlet.1807
20 Jeffcoate, A., Elliott, T., Kasemann, S., Ionov, D., Cooper, K., & Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1), 202–218. https://doi.org/10.1016/j.gca.2006.06.1611
21 Kil, Y., Jung, H., & Yang, K. (2016). Li isotopic disequilibrium of the Cenozoic subcontinental lithospheric mantle in East Asia. Geosciences Journal, 20(5), 597–607. https://doi.org/10.1007/s12303‐016‐0024‐y
22 Kress, V., & Ghiorso, M. (1993). Multicomponent diffusion in MgO‐Al2O3‐SiO2 and CaO‐MgO‐Al2O3‐SiO2 melts. Geochimica et Cosmochimica Acta, 57(18), 4453–4466. https://doi.org/10.1016/0016‐7037(93)90495‐I
23 Kress, V. C., & Ghiorso, M. S. (1995). Multicomponent diffusion in basaltic melts. Geochimica et Cosmochimica Acta, 59(2), 313–324. https://doi.org/10.1016/0016‐7037(94)00286‐U
24 Liang, Y. (2010). Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. Reviews in Mineralogy and Geochemistry, 72(1), 409–446. https://doi.org/10.2138/rmg.2010.72.9
25 Liang, Y., & Davis, A. M. (2002). Energetics of multicomponent diffusion in molten CaO‐Al2O3‐SiO2. Geochimica et Cosmochimica Acta, 66(4), 635–646. https://doi.org/10.1016/S0016‐7037(01)00793‐1
26 Liang, Y., Richter, F. M., & Watson, E. B. (1996). Diffusion in silicate melts: II. Multicomponent diffusion in CaO‐Al2O3‐SiO2 at 1500 °C and 1 GPa. Geochimica et Cosmochimica Acta, 60(24), 5021–5035. https://doi.org/10.1016/S0016‐7037(96)00352‐3
27 Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., & Zimmerman, M. (2005). Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochimica et Cosmochimica Acta, 69(3), 735–751. https://doi.org/10.1016/j.gca.2004.08.004
28 Marschall, H. R., von Strandmann, P. A. P., Seitz, H.‐M., Elliott, T., & Niu, Y. (2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262(3–4), 563–580. doi: 10.1016/j.espl.2007.08.005
29 Morgan, L. E., Ramos, D. P. S., Davidheiser‐Kroll, B., Faithfull, J., Lloyd, N. S., Ellam, R. M., & Higgins, J. A. (2018). High‐precision 41K/39K measurements by MC‐ICP‐MS indicate terrestrial variability of δ41K. Journal of Analytical Atomic Spectrometry, 33(2), 175–186. https://doi.org/10.1039/C7JA00257B
30 Mueller, T., Watson, E. B., Trail, D., Wiedenbeck, M., Van Orman, J., & Hauri, E. H. (2014). Diffusive fractionation of carbon isotopes in γ‐Fe: Experiment, models and implications for early solar system processes. Geochimica et Cosmochimica Acta, 127, 57–66. https://doi.org/10.1016/j.gca.2013.11.014
31 Mungall, J. E., Romano, C., & Dingwell, D. B. (1998). Multicomponent diffusion in the molten system K2O‐Na2O‐Al2O3‐SiO2‐H2O. American Mineralogist, 83(7–8), 685–699. https://doi.org/10.2138/am‐1998‐7‐802
32 Oeser, M., Dohmen, R., Horn, I., Schuth, S., & Weyer, S. (2015). Processes and time scales of magmatic evolution as revealed by fe–mg chemical and isotopic zoning in natural olivines. Geochimica et Cosmochimica Acta, 154, 130–150. https://doi.org/10.1016/j.gca.2015.01.025
33 Oishi, Y., Nanba, M., & Pask, J. A. (1982). Analysis of liquid‐state interdiffusion in the system CaO‐Al2O3‐SiO2 using multiatomic ion models. Journal of the American Ceramic Society, 65(5), 247–253. doi: 10.1111/J.1151‐2916.1982.TB10427.X
34 Onsager, L. (1945). Theories and problems of liquid diffusion. Annals of the New York Academy of Sciences, 46(5), 241–265. https://doi.org/10.1111/j.1749‐6632.1945.tb36170.x
35 Parkinson, I. J., Hammond, S. J., James, R. H., & Rogers, N. W. (2007). High‐temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, 257(3–4), 609–621. doi: 10.1016/j.espl.2007.03.023
36 Richter, F. M. (1993). A method for determining activity‐composition relations using chemical diffusion in silicate melts. Geochimica et Cosmochimica Acta, 57(9), 2019–2032. https://doi.org/10.1016/0016‐7037(93)90090‐J
37 Richter, F., Chaussidon, M., Mendybaev, R., & Kite, E. (2016). Reassessing the cooling rate and geologic setting of Martian meteorites MIL 03346 and NWA 817. Geochimica et Cosmochimica Acta, 182, 1–23. https://doi.org/10.1016/j.gca.2016.02.020
38 Richter, F., Chaussidon, M., Watson, E. B., Mendybaev, R., & Homolova, V. (2017). Lithium isotope fractionation by diffusion in minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219, 124–142. https://doi.org/10.1016/j.gca.2017.09.001
39 Richter, F. M., Davis, A. M., DePaolo, D. J., & Watson, E. B. (2003). Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20), 3905–3923. https://doi.org/10.1016/S0016‐7037(03)00174‐1
40 Richter, F. M., Liang, Y., & Davis, A. M. (1999). Isotope fractionation by diffusion in molten oxides. Geochimica et Cosmochimica Acta, 63(18), 2853–2861. https://doi.org/10.1016/S0016‐7037(99)00164‐7
41 Richter, F. M., Liang, Y., & Minarik, W. G. (1998). Multicomponent diffusion and convection in molten MgO‐Al2O3‐SiO2. Geochimica et Cosmochimica Acta, 62(11), 1985–1991. https://doi.org/10.1016/S0016‐7037(98)00123‐9
42 Richter, F. M., Mendybaev, R. A., Christensen, J. N., Ebel, D., & Gaffney, A. (2011). Laboratory experiments bearing on the origin and evolution of olivine‐rich chondrules. Meteoritics & Planetary Science, 46(8), 1152–1178. https://doi.org/10.1111/j.1945‐5100.2011.01220.x
43 Richter, F., Watson, B., Chaussidon, M., Mendybaev, R., & Ruscitto, D. (2014). Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126, 352–370. https://doi.org/10.1016/j.gca.2013.11.008
44 Richter, F. M., Watson, E. B., Mendybaev, R., Dauphas, N., Georg, B., Watkins, J., & Valley, J. (2009). Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73(14), 4250–4263. https://doi.org/10.1016/j.gca.2009.04.011
45 Roskosz, M., Luais, B., Watson, H. C., Toplis, M. J., Alexander, C. M., & Mysen, B. O. (2006). Experimental quantification of the fractionation of Fe isotopes during metal segregation from a silicate melt. Earth and Planetary Science Letters, 248(3), 851–867. doi: 10.1016/j.espl.2006.06.037
46 Rudnick, R. L., & Ionov, D. A. (2007). Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far‐east Russia: product of recent melt/fluid–rock reaction. Earth and Planetary Science Letters, 256(1–2), 278–293. https://doi.org/10.1016/j.epsl.2007.01.035
47 Ryerson, F., Hess, P. (1978). Implications of liquid‐liquid distribution coefficients to mineral‐liquid partitioning. Geochimica et Cosmochimica Acta, 42(6), 921–932. https://doi.org/10.1016/0016‐7037(78)90103‐5
48 Sio, C. K. I., Dauphas, N., Teng, F.‐Z., Chaussidon, M., Helz, R. T., & Roskosz, M. (2013). Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochimica et Cosmochimica Acta, 123, 302–321. https://doi.org/10.1016/j.gca.2013.06.008
49 Skulan, J., DePaolo, D. J., & Owens, T. L. (1997). Biological control of calcium isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica Acta, 61(12), 2505–2510. https://doi.org/10.1016/S0016‐7037(97)00047‐1
50 Su, B.‐X., Zhou, M.‐F., & Robinson, P. T. (2016). Extremely large fractionation of Li isotopes in a chromitite‐bearing mantle sequence. Scientific Reports, 6, 22370. https://doi.org/10.1038/srep22370
51 Sugawara, H., Nagata, K., & Goto, K. (1977). Interdiffusivities matrix of Cao‐Al2O3‐SiO2 melt at 1723 K to 1823 K. Metallurgical Transactions B 8(3), 605–612. https://doi.org/10.1007/BF02658629
52 Teng, F.‐Z., Dauphas, N., Helz, R. T., Gao, S., & Huang, S. (2011). Diffusion‐driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth and Planetary Science Letters, 308(3–4), 317–324. doi: 10.1016/j.espl.2011.06.003
53 Teng, F.‐Z., McDonough, W. F., Rudnick, R. L., & Walker, R. J. (2006). Diffusion‐driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243(3), 701–710. doi: 10.1016/j.espl.2006.01.036
54 Wakabayashi, H., & Oishi, Y. (1978). Liquid‐state diffusion of Na2O–CaO–SiO2 system. The Journal of Chemical Physics, 68(5), 2046–2052. https://doi.org/10.1063/1.436027
55 Watkins, J. M. (2010). Elemental and isotopic separation by diffusion in geological liquids. Ph.D. thesis, UC Berkeley.
56 Watkins, J. M., DePaolo, D. J., Huber, C., & Ryerson, F. J. (2009). Liquid composition‐dependence of calcium isotope fractionation during diffusion in molten silicates. Geochimica et Cosmochimica Acta, 73(24), 7341–7359. https://doi.org/10.1016/j.gca.2009.09.004
57 Watkins, J. M., DePaolo, D. J., Ryerson, F. J., & Peterson, B. T. (2011). Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions. Geochimica et Cosmochimica Acta, 75(11), 3103–3118. https://doi.org/10.1016/j.gca.2011.03.002
58 Watkins, J. M., DePaolo, D. J., & Watson, E. B. (2017). Kinetic fractionation of non‐traditional stable isotopes by diffusion and crystal growth reactions. Reviews in Mineralogy and Geochemistry, 82(1), 85–125. https://doi.org/10.2138/rmg.2017.82.4
59 Watkins, J. M., Liang, Y., Richter, F., Ryerson, F. J., & DePaolo, D. J. (2014). Diffusion of multi‐isotopic chemical species in molten silicates. Geochimica et Cosmochimica Acta, 139, 313–326. https://doi.org/10.1016/j.gca.2014.04.039
60 Watson, E. B. (1976). Two‐liquid partition coefficients: experimental data and geochemical implications. Contributions to Mineralogy and Petrology, 56(1), 119–134. https://doi.org/10.1007/BF00375424
61 Watson, E. B., & Müller, T. (2009). Non‐equilibrium isotopic and elemental fractionation during diffusion‐controlled crystal growth under static and dynamic conditions. Chemical Geology, 267(3–4), 111–124. https://doi.org/10.1016/j.chemgeo.2008.10.036
62 Wu, H., He, Y., Teng, F.‐Z., Ke, S., Hou, Z., & Li, S. (2018). Diffusion‐driven magnesium and iron isotope fractionation at a gabbro‐granite boundary. Geochimica et Cosmochimica Acta, 222, 671–684. https://doi.org/10.1016/j.gca.2017.11.010
63 Yogodzinski, G., Vervoort, J., Brown, S. T., & Gerseny, M. (2010). Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc. Earth and Planetary Science Letters, 300(3–4), 226–238. https://doi.org/10.1016/j.epsl.2010.09.035
64 Zhang, Y. (1993). A modified effective binary diffusion model. Journal of Geophysical Research: Solid Earth, 98(B7), 11901–11920.
65 Zhang, Y. (2010). Diffusion in minerals and melts: theoretical background. Reviews in Mineralogy and Geochemistry, 72(1), 5–59. https://doi.org/10.2138/rmg.2010.72.2
66 Zhao, X., Zhang, Z., Huang, S., Liu, Y., Li, X., & Zhang, H. (2017). Coupled extremely light Ca and Fe isotopes in peridotites. Geochimica et Cosmochimica Acta, 208, 368–380. https://doi.org/10.1016/j.gca.2017.03.024