Читать книгу Isotopic Constraints on Earth System Processes - Группа авторов - Страница 79

REFERENCES

Оглавление

1 Amini, M., Eisenhauer, A., Bohm, F., Holmden, C., Kreissing, K., Hauff, F., & Jochum, K. P. (2009). Calcium isotopes (δ44/40Ca) in MPI‐DING reference glasses, USGS rock powders and various rocks: Evidence for Ca isotope fractionation in terrestrial silicates. Geostandards and Geoanalytical Research, 33, 231–247. https://doi.org/10.1111/j.1751‐908X.2009.00903.x

2 Amsellem, E., Moynier, F., & Puchtel, I. S. (2019). Evolution of the Ca isotopic composition of the mantle. Geochimica et Cosmochimica Acta, 258, 195–206. https://doi.org/10.1016/j.gca.2019.05.026

3 Amsellem, E., Moynier, F., Bertrand, H., Bouyon, Am., Mata, J., Tappe, S., & Day, J. M. D. (2020) Calcium isotopic evidence for the mantle sources of carbonatites. Science Advances, 6, eaba3269. doi: 10.1126/sciadv.aba3269

4 Antonelli, M. A., Schiller, M., Schauble, E. A., Mittal, T., DePaolo, D. J., Chacko, T., et al. (2019a). Kinetic and equilibrium Ca isotope effects in high‐T rocks and minerals. Earth and Planetary Science Letters, 517, 71–82. https://doi.org/10.1016/j.epsl.2019.04.013

5 Antonelli, M. A., Mittal, T., McCarthy, A., Tripoli, B., Watkins, J. M., DePaolo, D. J. (2019b). Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems. Proceedings of the National Academy of Sciences, 116, 20315–20321. https://doi.org/10.1073/pnas.1908921116

6 Antonelli, M. A., DePaolo, D. J., Chacko, T., Grew, E. S., & Rubatto, D. (2019c). Radiogenic Ca isotopes confirm post‐formation K depletion of lower crust. Geochemical Perspectives Letters, 9, 43–48. doi: 10.7185/geochemlet.1904

7 Antonelli, M. A., & Simon, J. I. (2020). Calcium isotopes in high‐temperature terrestrial processes. Chemical Geology, 548, 119651, ISSN 0009‐2541. https://doi.org/10.1016/j.chemgeo.2020.119651

8 Banergee, A., & Chakrabarti, R. (2019). A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India. Lithos, 326–327, 572–585. https://doi.org/10.1016/j.lithos.2019.01.007

9 Bell, K., & Tiltonm, G.R. (2002). Probing the mantle: The story from carbonatites. EOS, Transactions American Geophysical Uniion, 83, 273–277. https://doi.org/10.1029/2002EO000190

10 Bermingham, K. R., Gussone, N., Mezger, K., & Krause, J. (2018). Origins of mass‐dependent and mass‐independent Ca isotope variations in meteoritic components and meteorites. Geochimica et Cosmochimica Acta, 226, 206–223. https://doi.org/10.1016/j.gca.2018.01.034

11 Blattler, C. L., & Higgins, J. A. (2017). Testing Urey’s carbonate‐silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth and Planetary Science Letters, 479, 241–251. https://doi.org/10.1016/j.epsl.2017.09.033

12 Blichert‐Toft, J., Frey, F. A., & Albarede, F. (1999). Hf isotope evidence for pelagic sediments in the source of Hawiian basalts. Science, 285, 879–882. doi: 10.1126/science.285.5429.879

13 Bolge, L. L., Carr, M. J., Milidakis, K. K., Lindsay, F. N., & Feigenson, M. D. (2009) Correlating geochemistry, tectonics, and volcanic volume along the Centeral American volcanic front. Geochemistry, Geophysics, Geosystems, 10, 1–15. https://doi.org/10.1029/2009GC002704

14 Cabral, R. A., Jackson, M. G., Rose‐Koga, E. F., Koga, K. T., Whitehouse, M. J., Antonelli, M. A., et al. (2013). Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archean crust. Nature, 496, 490–493. https://doi.org/10.1038/nature12020

15 Caro, G., Papanastassiou, D. A., & Wasserburg, G. J. (2010). 40K‐40Ca isotopic constraints on the ocenaic calcium cycle. Earth and Planetary Science Letters, 296, 124–132. https://doi.org/10.1016/j.epsl.2010.05.001

16 Carr, M. J., Feigenson, M. D., & Bennett, E. A. (1990). Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Centeral American Arc. Contributions to Mineralogy and Petrology, 105, 369–380. https://doi.org/10.1007/BF00286825

17 Castillo, P. R., Maclsaac, C., Perry, S., & Veizer, J. (2018). Marine Carbonates in the Mantle Source of Oceanic Basalts: Pb Isotopic Constraints. Scientific Reports, Vol. 8 (Article number: 14932). https://doi.org/10.1038/s41598‐018‐33178‐4

18 Chan, L.‐H., Leeman, W.P., & You, C.‐F. (2002). Lithium isotopic composition of Central American volcanic arc lavas: implications or modification of subarc mantle by slab‐derived fluids: correction. Chemical Geology, 182, 293–300. https://doi.org/10.1016/S0009‐2541(01)00298‐4

19 Chan, L.‐H., Leeman, W. P., & Plank, T. (2006). Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems, 7, 1–25. https://doi.org/10.1029/2005GC001202

20 Chen, C., Ciazela, J., Li, W., Dai, W., Wang, Z., Foley, S.F., et al. (2019a). Calcium isotopic compositions of oceanic crust at various spreading rates. Geochimica et Cosmochimica Acta, 278, 272–288. https://doi.org/10.1016/j.gca.2019.07.008

21 Chen, C., Dai, W., Wang, Z., Liu, Y., Li, M., Becker, H., Foley, S.F. (2019b). Calcium isotope fractionation during magmatic processes in the upper mantle. Geochimica et Cosmochimica Acta, 249, 121–137. https://doi.org/10.1016/j.gca.2019.01.031

22 Chen, C., Liu, Y., Feng, L., Foley, S. F., Zhou, L., Ducea, M. N., & Hu, Z. (2018). Calcium isotope evidence for subduction‐enriched lithospheric mantle under the northern North China Craton. Geochimica et Cosmochimica Acta, 238, 55–67. https://doi.org/10.1016/j.gca.2018.06.038

23 Dawson, J. B., Garson, M. S., & Roberts, B. (1987). Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania, inferences for calcite carbonatite lavas. Geology, 15, 765–768. https://doi.org/10.1130/0091‐7613(1987)15<765:AFACLF>2.0.CO;2

24 De La Rocha, C. L., & DePaolo, D. J. (2000). Isotopic evidence for variations in the marine calcium cycle over the cenozoic. Science, 289 (5482), 1176–1178. doi: 10.1126/science.289.5482.1176

25 DePaolo, D. J. (2004). Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Geochemistry of Non‐Traditional Stable Isotopes, 55, 255–288. https://doi.org/10.2138/gsrmg.55.1.255

26 DePaolo, D. J., & Wasserburg, G. J. (1977). The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophysical Research Letters, 4, 465–468. https://doi.org/10.1029/GL004i010p00465

27 Fantle, M., & DePaolo, D. J. (2005). Variations in the marine Ca cycle over the past 20 million years. Earth and Planetary Science Letters, 237, 102–117. https://doi.org/10.1016/j.epsl.2005.06.024

28 Fantle, M. S., & Tipper, E. T. (2014). Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth‐Science Reviews, 129, 148–177. https://doi.org/10.1016/j.earscirev.2013.10.004

29 Farkas, J., Buhl, D., Blenkinsop, J., & Veizer, J. (2007). Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ44/40Ca of marine skeletal carbonates. Earth and Planetary Science Letters, 253, 96–111. https://doi.org/10.1016/j.epsl.2006.10.015

30 Feigenson, M. D., & Carr, M. J. (1986). Positively correlated Nd and Sr isotope ratios of lavas from the Central American volcanic front. Geology, 14, 79–82. https://doi.org/10.1130/0091‐7613(1986)14<79:PCNASI>2.0.CO;2

31 Feigenson, M. D., Carr, M. J., Maharaji, S. V., Juliano, S., & Bolge, L. L. (2004). Lead isotope composition of Central American Volcanoes: Influence of the Galapagos Plume. Geochemistry Geophyscis Geosystems, 5, 1–14. doi: 10.1029/2003GC000621

32 Fischer, T. P., Burnard, P., Marty, B., Hilton, D. R., Furi, E., Palhol, F., et al. (2009). Upper‐mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature, 459, 77–80. https://doi.org/10.1038/nature07977

33 Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., & Thomas, E. (2008). A dynamic marine Ca cycle during the past 28 million years. Science, 322, 1671–1674. doi:10.1126/science.1163614

34 Hawkesworth, C., Turner, S., Peate, D., McDermott, F., & van Calsteren, P. (1997). Elemental U and Th variations in island arc rocks: implications for U‐series isotopes. Chemical Geology, 139, 207–221. https://doi.org/10.1016/S0009‐2541(97)00036‐3

35 Heuser, A., Eisenhauer, A., Bohm, F., Wallmann, K., Gussone, N., Pearson, P. N., et al. (2005). Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography, 20. doi: org/10.1029/2004PA001048

36 Huang, S., Farkaš, J., & Jacobsen, S. B. (2011). Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochimica et Cosmochimica Acta, 75, 4987–4997. https://doi.org/10.1016/j.gca.2011.06.010

37 Huang, S., Frarkaš, J., & Jacobsen, S. B. (2010). Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292, 337–344. https://doi.org/10.1016/j.epsl.2010.01.042

38 Huang, S., & Frey, F. A. (2005). Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contributions to Mineralogy and Petrology, Vol 149, 556–575. https://doi.org/10.1007/s00410‐005‐0664‐9

39 Ionov, D. A., Yu, ‐. H., Q., Kang, J.‐T., Golovin, A. V., Oleinikov, O. B., Zheng, W., et al. (2019). Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 248, 1–13. doi: 10.1016/j.gca.2018.12.023

40 Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., et al. (2006). MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry Geophysics Geosystems, 7. doi: org/10.1029/2005GC001060

41 John, T., Gussone, N., Padladchikov, Y. Y., Bebout, G. E., Dohmne, R., Halama, R., et al. (2012). Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature GeoScience, 5, 489–492. https://doi.org/10.1038/ngeo1482

42 Kang, J.‐T., Ionov, D. A., Liu, F., Zhang, C.‐L., Golovin, A. V., Qing, L.‐P., et al. (2017). Calcium isotopic fractionation in mantle pridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474, 128–137. https://doi.org/10.1016/j.epsl.2017.05.035

43 Kang, J.‐T., Zhu, H. L., Liu, Y. F., Liu, F., Wu, F., Hao, Y. T., et al. (2016) Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochimica et Cosmochimica Acta, 174, 335–344. https://doi.org/10.1016/j.gca.2015.11.039

44 Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., & Pearson, P. N. (2005). Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters, 231, 73–86. https://doi.org/10.1016/j.epsl.2004.12.006

45 Lassiter, J. C., DePaolo, D. J., & Tatsumoto, M. (1996). Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 101, 11769–11780.

46 Leeman, W. P., Carr, M. J., & Morris, J. D. (1994). Boron geochemistry of the Central American Volcanic Arc: Constraints on the genesis of subduction‐related magmas. Geochimica et Cosmochimica Acta, 58, 149–168. https://doi.org/10.1016/0016‐7037(94)90453‐7

47 Lu, W.‐N., Yongsheng, H. Wang, Y., & Ke, S. (2019). Behavior of calcium isotopes during continental subduction recorded in meta‐basaltic rocks. Geochimica et Cosmochimica Acta, 278, 392–404. https://doi.org/10.1016/j.gca.2019.09.027

48 Lui, F., Li, X., Wang, G., Liu, Y., Zhu, H., Kang, J., et al. (2017). Marine carbonate component in the mantle beneath the Southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes. Journal of Geophysical Research: Solid Earth, 122, 9729–9744. https://doi.org/10.1002/2017JB014206

49 Marshall, B. D., & DePaolo, D. J. (1982). Precise age‐determinations and petrogenetic studies using the K‐Ca method. Geochimica et Cosmochimica Acta, 46 (12), 2537–2545. https://doi.org/10.1016/0016‐7037(82)90376‐3

50 Marshall, B. D., & DePaolo, D. J. (1989). Calcium isotopes in igneous rocks and the origin of granite. Geochimica et Cosmochimica Acta, 53(4), 917–922. https://doi.org/10.1016/0016‐7037(89)90036‐7

51 Morris, J. D., Leeman, W. P., & Tera, F. (1990). The subducted component of island arc lavas; constraints from Be isotopes and B‐Be systematics. Nature, 344, 31–36. https://doi.org/10.1038/344031a0

52 Nielsen Lammers, L., Kulasinski, K., Zarzycki, P., DePaolo, D. J. (2020). Molecular simulations of kinetic stable calcium isotope fractionation at the calcite‐aqueous interface. Chemical Geology, 532, 119315. https://doi.org/10.1016/j.chemgeo.2019.119315

53 Nyström, J. O., Levy, B., Troëng, B., Ehrenborg, J., & Carranza, G. (1988). Geochemistry of volcanic rocks in a traverse through Nicaragua. Revista Geológica de América Central, 8, 77–109. doi: 10.15517/RGAC.V0I08.12950

54 Patino, L. C., Carr, M. J., & Feigenson, M. D. (1997). Cross‐arc geochemical variations in volcanic fields in Honduras, C.A.: progressive changes in source with distance from the volcanic front. Contributions to Mineralogy and Petrology, 129, 341–351. https://doi.org/10.1007/s004100050341

55 Patino, L. C., Carr, M. J., & Feigenson, M. D. (2000). Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138, 265–283. https://doi.org/10.1007/s004100050562

56 Putrika, K. D. (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochemistry Geophysics Geosystems, 6(Q05L08). doi: 10.1029/2005GC000915

57 Presnall, D. C., & Hoover, J. D. (1987). High pressure phase equilbrium constraints on the origin of mid‐ocean ridge basalts. In Mysen, B.O. (ed.), Magmatic Processes: Physicochemical Principles, Special Publication‐Geochemical Society, 1, 75–89.

58 Russell, W. A., Papanastassiou, D. A., & Tombrello, T. A. (1978). Ca isotope fractionation on Earth and other solar‐system materials. Geochimica et Cosmochimica Acta, 42(8), 1075–1090. https://doi.org/10.1016/0016‐7037(78)90105‐9

59 Sadofsky, S. J., Portnyagin, M., Hoernle, K., & van den Bogaard, P. (2008). Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contributions to Mineralogy and Petrology, 155, 433–456. https://doi.org/10.1007/s00410‐007‐0251‐3

60 Santos, R. V., & Clayton, R. N. (1995). Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes. Geochimica et Cosmochimica Acta, 59, 1339‐1352. https://doi.org/10.1016/0016‐7037(95)00048‐5

61 Schmitt, A. K., Wetzel, F., Cooper, K. M., Zou, H., & Worner, G. (2010). Magmatic longevity of Laacher See Volcano (Eifel, Germany) indicated by U‐Th dating of intrusive carbonatites. Journal of Petrology, 51(5), 1053–1085. https://doi.org/10.1093/petrology/egq011

62 Schiller M., Gussone, N., & Wombacher, F. (2016). High temperature geochemistry and cosmochemistry. In: Gussone, N., Schmitt, A.‐D., Heuser, A., Wombacher, F., Dietzel, M., Tipper, E., & Schiller, M. (eds.), Calcium Stable Isotope Geochemistry. Advances in Isotope Geochemistry series. Springer, Berlin, Heidelberg, 223–245.

63 Simon, J. I., & DePaolo, D. J. (2010). Stable calcium isotopic composition of meteorites and rocky planets. Earth and Planetary Science Letters, 289, 457–466. https://doi.org/10.1016/j.epsl.2009.11.035

64 Simon, J. I., DePaolo, D. J., & Moynier, F. (2009). Calcium isotope composition of meteorites, Earth, and Mars. Astrophysical Journal, 702, 707–715. https://doi.org/10.1088/0004‐637X/702/1/707

65 Simon, J. I., Jordan, M. K., Tappa, M. J., Schauble, E. A., Kohl, I. E., & Young, E. D. (2017). Calcium and titanium isotope fractionation in refractory inclusions: Tracers of condensation and inheritance in the early solar protoplanetary disk. Earth and Planetary Science Letters, 472, 277–288. https://doi.org/10.1016/j.epsl.2017.05.002

66 Stille, P., Unruh, D. M., & Tatsumoto, M. (1983). Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalt. Nature, 304, 25–29. https://doi.org/10.1038/304025a0

67 Straub, S. M., Gomez‐Tuena, A., Stuart, F. M., Zellmer, G. F., Espinasa‐Perena, R., Cai, Y., & Iizuka, Y. (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters, 303, 337–347. https://doi.org/10.1016/j.epsl.2011.01.013

68 Straub, S. M., LaGatta, A. B., Martin‐Del Pozzo, A. L., & Langmuir, C. H. (2008). Evidence for high‐Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9, 1–33. https://doi.org/10.1029/2007GC001583

69 Turner, S., Hawkesworth, C., van Calsternen, P., Heath, E., Macdonald, R., & Black, S. (1996). U‐series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth and Planetary Science Letters, 142, 191–207. https://doi.org/10.1016/0012‐821X(96)00078‐7

70 Valdes, M. C., Moreira, M., Foriel, J., & Moynier, F. (2014). The nature of Earth's building blocks as revealed by calcium isotopes. Earth and Planetary Science Letters, 394, 135–145. https://doi.org/10.1016/j.epsl.2014.02.052

71 von Huene, R., Shipboard Scientific Party. (1982) Site 495: Cocos Plate – Middle America trench outer slope. In: Aubouin J. et al. (eds.) Initial Reports DSDP 67, 79–141.

72 Walter, M. J., Bulanova, G. P., Armstrong, L. S., Keshav, S., Blundy, J. D., Gudfinnsson, G., et al. (2008). Primary carbonatite melt from deeply subducted oceanic crust. Nature, 464, 622–625. https://doi.org/10.1038/nature07132

73 Wang, W., Zhou, C., Qin, T., Kang, J.‐T., Huang, S., Wu, Z., & Huang, F. (2017). Effect of Ca content on equilbrium Ca isotope fractionation between orthopyroxene and clinopyroxene. Geochimica et Cosmochimica Acta, 219, 44–56. https://doi.org/10.1016/j.gca.2017.09.022

74 Watkins, J. M., DePaolo, D. J., & Watson, E. B. (2017). Kinetic fractionation of non‐traditional stable isotopes by diffusion and crystal growth reactions. Reviews in Mineralogy and Geochemistry, 82, 85–125. https://doi.org/10.2138/rmg.2017.82.4

75 Wei, C.‐W., Xu, C., Chakhmouradian, A. R., Brenna, M., Kynicky, J., & Song, W.‐L. (2020) Carbon‐Strontium Isotope Decoupling in Carbonatites from Caotan (Qinling, China): Implications for the Origin of Calcite Carbonatite in Orogenic Settings. Journal of Petrology, egaa024. https://doi.org/10.1093/petrology/egaa024

76 Wombacher, F., Eisenhauer, A., Heuser, A., & Weyer, S. (2009). Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC‐ICP‐MS and double‐spike TIMS. Journal of Analytical Atomic Spectrometry, 24. doi: 10.1039/b820154d

77 Zaitsev, A. N., & Keller, J. (2006). Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos, 91, 191–207. https://doi.org/10.1016/j.lithos.2006.03.018

78 Zhao, X., Zhang, Z. F., Huang, S., Liu, Y., Li, X., & Zhang, H. (2017). Coupled extremely light Ca and Fe isotopes in peridotites. Geochimica et Cosmochimica Acta, 208, 368–380. https://doi.org/10.1016/j.gca.2017.03.024

79 Zhu, P., & MacDougall, J. D. (1998). Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochimica et Cosmochimica Acta, 62, 1691–1698. https://doi.org/10.1016/S0016‐7037(98)00110‐0

Isotopic Constraints on Earth System Processes

Подняться наверх