Читать книгу Искусственный интеллект, аналитика и новые технологии - Harvard Business Review (HBR) - Страница 5

Искусственный интеллект для реального мира
2. Создание портфолио проектов

Оглавление

Следующим шагом запуска программы ИИ является систематическая оценка потребностей и возможностей с последующей разработкой приоритетного портфеля проектов. В исследованных нами организациях для этой цели обычно использовались семинары или короткие консультации. Мы рекомендуем компаниям проводить оценки в трех основных областях.

Выявление возможностей

Первая оценка определяет, какие сферы бизнеса могли бы извлечь наибольшую выгоду от использования когнитивных приложений. Как правило, ими являются те отделы компании, где знания, полученные на основе анализа данных или извлеченные из документов, нужны в первую очередь, но пока недоступны.

● Узкие места. В некоторых случаях нужда в когнитивном прогнозировании вызвана узким местом в потоке информации; знания существуют в компании, но не оптимально распределены. Это часто наблюдается в сфере здравоохранения, например когда знания «пылятся» в клиниках, департаментах или академических медицинских центрах.

● Проблемы масштабирования. В других случаях знания доступны, но процесс их использования занимает слишком много времени или является дорогостоящим для масштабирования. Это характерная ситуация для финансовой сферы. Именно поэтому многие инвестиционные и управляющие компании уже предлагают клиентам «робоконсультирование» на основе ИИ, которое представляет собой экономически эффективное руководство по рутинным финансовым вопросам.

В фармацевтической промышленности Pfizer решает проблему масштабирования, используя IBM Watson для ускорения кропотливого процесса иммуно-онкологических исследований в рамках нового подхода к лечению рака, который задействует иммунную систему самого организма. Цикл разработки иммуно-онкологических препаратов может занимать до 12 лет, прежде чем они выйдут на рынок. Комбинируя сведения из научной литературы с собственными данными, такими как лабораторные отчеты, Watson помогает исследователям выявлять взаимосвязи и находить скрытые закономерности, которые должны быстрее «научить» новое лекарство распознавать цели, а также ускорить комбинирование терапии с обучением и подбор пациентов для этого нового класса препаратов.

● Ненадлежащая мощность. Наконец, организация может собрать данных больше, чем возможно обработать с помощью людей или компьютеров. Например, компания может располагать огромными объемами данных о цифровом поведении потребителей, но не может понять, что они означают и как применить эту информацию в стратегическом планировании. Для решения подобных проблем используется машинное обучение, ориентированное на такие группы задач, как таргетированная покупка цифровой рекламы или, в случае Cisco Systems и IBM, на создание десятков тысяч моделей потребительского поведения, чтобы определить, какие клиенты с какой вероятностью предпочтут те или иные товары.

Определение вариантов использования

Вторая оценка касается вариантов использования когнитивных приложений, которые принесут максимальную пользу и поспособствуют успехам в бизнесе. Начните с постановки ключевых вопросов, таких как: насколько важно для вашей общей стратегии решение конкретной проблемы? Насколько сложно в реализации предложенное решение на основе ИИ – как в техническом, так и в организационном плане? Окупят ли выгоды от запуска приложения затраты на его разработку и внедрение? Ответив на эти вопросы, установите приоритетность вариантов использования в соответствии с временным горизонтом каждого из них и учитывая возможность будущей интеграции в более широкую платформу или набор когнитивных инструментов для создания конкурентного преимущества.

Выбор технологии

Третья тема для проведения оценки – действительно ли инструменты ИИ, рассматриваемые для каждого варианта использования, соответствуют поставленной задаче. Например, чат-боты и интеллектуальные программы могут оказаться неподходящими, поскольку большинство из них пока умеют решать наиболее простые сценарии человеческих запросов (хотя и быстро развиваются). Другие технологии, такие как RPA, предназначенные для ускорения простых процессов вроде выставления счетов, могут на деле замедлять работу более сложных производственных систем. Или еще пример: системы визуального распознавания с глубоким обучением действительно распознают изображения на фотографиях и видео, но требуют большого количества маркеров и могут не справиться со сложным визуальным рядом. В будущем когнитивные технологии трансформируют бизнес-процессы, но сейчас разумнее предпринимать постепенные шаги с использованием доступных инструментов и планируя не столь отдаленные изменения. Когда-нибудь вы, возможно, решите передать взаимодействие с клиентами ботам, но сейчас, в качестве первого шага, более осуществимым и целесообразным будет автоматизация внутренней службы технической поддержки.

Искусственный интеллект, аналитика и новые технологии

Подняться наверх