Читать книгу Искусственный интеллект, аналитика и новые технологии - Harvard Business Review (HBR) - Страница 7
Искусственный интеллект для реального мира
4. Масштабирование
ОглавлениеМногие компании успешно запустили когнитивные пилоты, но не смогли достичь большего, развернув их в масштабах всей организации. Для достижения своих целей компаниям нужны подробные планы масштабирования, что требует сотрудничества между технологическими экспертами и ответственными за автоматизируемый бизнес-процесс лицами. Поскольку когнитивные технологии обычно поддерживают отдельные функции, а не весь процесс целиком, масштабирование почти всегда требует интеграции с существующими системами. Действительно, в нашем опросе руководители сообщили, что такая интеграция была самой большой проблемой, с которой они столкнулись в ИИ-проектах.
Компании должны начать процесс масштабирования с выяснения того, является ли необходимая интеграция возможной в принципе и выполнимой технически. Например, если приложение зависит от специальной технологии, которую сложно получить, это ограничит масштабирование. Убедитесь, что те, кто отвечает за бизнес-процессы, обсуждают вопросы масштабирования с ИТ-отделом до начала или во время пилотного этапа. Конечный запуск в обход айтишников вряд ли будет способствовать успеху, даже в случае относительно простых технологий, таких как RPA.
Например, медицинская страховая компания Anthem разрабатывает когнитивные технологии в рамках серьезной модернизации существующих систем. Вместо того чтобы встраивать новые когнитивные приложения в устаревшую технологию, Anthem использует целостный подход, максимизирующий ценность, производимую когнитивными приложениями, снижающий общую стоимость разработки и интеграции и создающий эффект ореола в устаревших системах. Компания также реорганизует процессы, чтобы, по словам ИТ-директора Тома Миллера, «использовать когнитивные функции, которые выведут нас на новый уровень».
При масштабировании компании могут столкнуться с серьезными проблемами управления изменениями. Так, к примеру, в одной сети розничной торговли одеждой в США пилотный проект в небольшой группе магазинов использовал машинное обучение для получения рекомендаций по продуктам в режиме онлайн, прогнозирования оптимальных запасов и моделей быстрого их пополнения, а также, что оказалось наиболее сложным, в мерчандайзинге. Закупщики, привыкшие заказывать товары на основе своей интуиции, почувствовали угрозу и поставили вопрос ребром: «Если теперь у вас есть эта штука, зачем вам мы?» После завершения пилотного этапа группа закупщиков явилась к начальнику отдела мерчандайзинга с требованием свернуть проект. Исполнительный директор сети познакомил их с положительными результатами пилота и настоял на расширении проекта. Он заверил закупщиков, что, освободившись от определенных мерчандайзинговых функций, они смогут выполнять более ценную работу, которую люди выполняют лучше машин, такую, например, как понимание желаний молодых клиентов и определение планов производителей одежды. При этом он признал, что новые функции потребуют обучения мерчандайзеров.
Если для достижения желаемых результатов нужно масштабироваться, компаниям также придется сосредоточиться на повышении производительности. Многие, например, планируют нарастить ее, увеличив число клиентов и транзакций без увеличения численности персонала. Компании, которые не хотят инвестировать в ИИ, выдвигая в качестве основной причины неизбежное сокращение рабочих мест, должны знать, что куда лучше с этой задачей справляется систематическое изнурение сотрудников или отказ от аутсорсинга.