Читать книгу Quema - Herman Pontzer - Страница 5
ОглавлениеCapítulo 2
Bueno, pero ¿qué es el metabolismo?
—¿Cómo se mete la música al radio?
No me esperaba para nada esa pregunta. Brian Wood y su esposa Carla, nuestro asistente de campo Herieth y yo acabábamos de instalar nuestras tiendas bajo unos árboles de acacia cerca del campamento hadza en la laberíntica y árida meseta que separa el lago Eyasi de las rocosas montañas Tli’ika. Brian y yo descansábamos en el terreno polvoso, sentados en sillas de acampar y conversando sobre asuntos de trabajo a la luz grisácea de la tarde. Dos hombres hadza, Bagayo y Giga, estaban sentados en el suelo cerca de nosotros, manteniendo una acalorada discusión en hadza. Tenían un pequeño radio de pilas, una posesión muy preciada en Hadzaland, donde las opciones de entretenimiento son limitadas. En algún punto decidieron incluirnos en la conversación, pasando al suajili para formular su pregunta. Pero Brian y yo debimos poner cara de desconcierto, porque Bagayo volvió a preguntar.
—¿Cómo se mete la música al radio?
Mierda, ésa tendríamos que saberla…
Una de las mejores cosas de viajar es exponerse a nuevas ideas y conocimientos, y con los hadza siempre es un viaje de dos sentidos. Es alucinante lo mucho que ellos saben sobre el mundo natural. Cualquier niño hadza puede enumerar las características físicas y tendencias conductuales de decenas de especies animales y explicarte los usos —como alimento, fuego, refugio o herramienta— de cada arbusto, hierba y árbol en el paisaje. Observar cómo un hombre hadza rastrea un impala herido durante kilómetros, sin ninguna huella evidente; o cómo una mujer hadza determina el tamaño y el grado de madurez de un tubérculo silvestre, a un metro bajo la superficie golpeando el suelo con una roca, parece magia pura.
Nosotros también comunicamos lo que sabemos sobre el mundo exterior. Compartimos nuestros libros y artefactos; y, de vez en cuando, hacemos noches de cine en las que proyectamos en la computadora portátil documentales sobre la naturaleza o películas de acción (la serie de Jurassic Park es una de las favoritas). La curiosidad natural con la que todos nacemos, la esencia de cualquier científico, parece estar muy cultivada en la cultura hadza. Quieren saber.
Las conversaciones suelen empezar de forma inocente, pero pronto se transforman en trascendentales discusiones sobre geografía, cosmología o biología. “¿Cuánto tiempo te llevaría caminar hasta tu casa?”, es una pregunta bastante sencilla, pero una respuesta precisa requiere explicar que la Tierra es redonda e inimaginablemente grande, con enormes continentes separados por gigantescos océanos (ellos estaban familiarizados con esos conceptos, pero parecían serles indiferentes). “¿De verdad existen las morsas [y si es así, ¿qué demonios son?]?” Es otra buena pregunta, sobre todo si acabas de ver un documental sobre la vida salvaje del Ártico y no conoces el hielo, los océanos o los mamíferos marinos. Traté de explicar que las morsas son criaturas reales (aunque ciertamente absurdas), como hipopótamos con los colmillos de un elefante y patas de pez. No sé si alguien me creyó.
Hay una frase genial, de origen incierto pero atribuida a Einstein, que dice: “Si no puedes explicar algo en forma sencilla es que en realidad no lo entiendes”. Las discusiones con los hadza materializaban esa sentencia. Entre los límites de mi suajili y su falta de escolaridad formal, explicar cómo funcionan nuestros equipos de investigación, cómo los dinosaurios de Jurassic Park fueron creados por computadora o qué significaba un monitor de presión sanguínea siempre representaba un divertido desafío. Esto con frecuencia exponía lagunas en mi propio conocimiento de las que no era consciente y que estaban ocultas en mi mente con una ridiculez que sonaba muy inteligente, pero en realidad no tenían ningún sentido.
Ahora que lo pienso, ¿cómo se mete la música en la radio?
Hice un primer tímido intento. En Arusha, la ciudad grande más próxima (de la que todos los hadza habían oído hablar, aunque pocos se habían aventurado hasta allá), había un edificio. Adentro, una persona reproducía la música de una cinta en una grabadora (hasta allí íbamos bien; ya habían visto grabadoras). Entonces, el edificio tenía una máquina que escuchaba la música y la enviaba por el aire mediante una antena, un gran poste metálico. La radio, con su propia antena, capturaba la música del aire y la reproducía a través de la bocina.
—Pero ¿qué mandan por el aire desde el edificio en Arusha hasta aquí?
—Ondas de radio —respondí, y supe de inmediato que estaba en problemas.
—¿Qué son las ondas de radio?
Buena pregunta.
—Bueno, son invisibles y viajan por el aire, y no puedes escucharlas pero transportan la música… —me quedé mudo. No tenía idea de cómo describir las ondas de radio, porque yo mismo no las entendía. En mi mente no eran mucho más que los arcos que emanaban de una antena en las caricaturas. Sabía que eran algún tipo de “energía electromagnética”, pero sólo era más discurso. Eran como la luz, ¿no? Pero ¿cómo iba a explicarles que era una luz invisible que emanaba de un poste de metal y llevaba música con ella? ¿Al menos era una forma precisa de describirlas?
—¡Ah! —exclamó Bagayo, alzando su arco de caza—. Es como esto —y pulsó la cuerda de su arco. El sonido viaja en forma invisible por el aire, desde la cuerda del arco hasta nuestros oídos. ¡Gran analogía! ¡Sí, hablamos de algo exactamente como eso! Sabía que las ondas de sonido y las ondas de radio eran cosas diferentes, pero no podría explicarlo mejor que Bagayo.
Giga y Bagayo se quedaron satisfechos. Brian y yo la habíamos librado por el momento.
Cuando volví a la ciudad para reaprovisionarnos busqué “ondas de radio” en internet.
DESMITIFICAR EL METABOLISMO
Si vamos a discutir las fronteras de la ciencia del metabolismo humano necesitamos entender —mejor de lo que el biólogo típico entiende las ondas de radio— qué es exactamente el metabolismo y cómo funciona. Sin sustitutos, sin tecnicismos y sin tonterías. Comencemos por el principio.
Metabolismo es un término amplio que designa todo el trabajo que hacen tus células. La mayor parte de este trabajo implica bombear moléculas hacia dentro y hacia fuera de las membranas (o paredes) celulares y convertir un tipo de molécula en otra. Tu cuerpo está formado por miles de moléculas que interactúan —enzimas, hormonas, neurotransmisores, ADN y más—, pero las que obtienes de tu dieta casi nunca se encuentran en una forma que se pueda utilizar directamente. Por el contrario, las células absorben continuamente, a través de sus membranas, nutrientes y otras moléculas que circulan en el torrente sanguíneo para usarlas como combustible o bloques, las convierten en algo distinto y luego expulsan lo que construyeron fuera de sus paredes para que se use en algún otro lugar del cuerpo. Las células de los ovarios absorben moléculas de colesterol, construyen estrógeno con ellas y luego expulsan este estrógeno (una hormona que tiene efectos por todo el cuerpo) hacia el torrente sanguíneo. Los nervios y las neuronas absorben y expulsan continuamente iones (moléculas con carga negativa o positiva) para mantener una carga negativa interna. Las células del páncreas, guiadas por su ADN, ensamblan insulina y una larga lista de enzimas digestivas a partir de aminoácidos. La lista sigue y sigue. No darías crédito de la cantidad de trabajo metabólico que está ocurriendo ahora mismo dentro de tu cuerpo.
Todo este trabajo requiere energía. De hecho, el trabajo es energía. Medimos el trabajo y la energía con las mismas unidades y podemos hablar de ellos indistintamente. Cuando lanzas una pelota de beisbol, su energía cinética al dejar tu mano es exactamente igual al trabajo que realizaste para acelerarla. El calor es otra forma común de energía. Cuando metes una taza de leche al microondas para entibiarla, el aumento en la temperatura te indica cuánta energía electromagnética capturó el líquido. La energía que libera la combustión de la gasolina es igual al trabajo que se realiza para mover el automóvil por la calle más el calor generado por el motor. La energía consumida siempre es igual a la combinación del trabajo realizado y el calor acumulado,1 ya sea que hablemos de tu cuerpo, tu automóvil o tu teléfono inteligente. Todos jugamos con las mismas reglas de la física.
La energía también puede ser almacenada en cosas que tienen el potencial de realizar trabajo o producir calor, como la gasolina en el tanque. Una liga estirada o el resorte de una ratonera lista para activarse tienen energía de deformación. Una bola de boliche colocada precariamente en un estante alto, que podría estrellarse en el suelo en cualquier momento, tiene energía potencial. Los enlaces que mantienen juntas las moléculas pueden almacenar energía química que se libera cuando las moléculas se rompen. Cuando las moléculas en medio kilogramo de nitroglicerina (fórmula química 4C3H5N3O9) se descomponen en nitrógeno (N2), agua (H2O), metano (CO) y oxígeno (O2) durante la detonación, liberan violentamente suficiente energía (730 kilocalorías)2 como para lanzar a un hombre de 75 kilos cuatro kilómetros en sentido vertical (que sería trabajo), vaporizarlo (que sería calor) o una combinación de ambas. Esto nos lleva a nuestro último punto sobre la energía: puede transformarse de muchas formas —energía cinética, calor, trabajo, energía química, etcétera—, pero nunca perderse.
Las calorías y los joules son las dos unidades de medida estándar para la energía, ya sea la energía química almacenada en la comida, el calor de una fogata o el trabajo realizado por una máquina. Las calorías son las más comunes en Estados Unidos cuando hablamos de comida, pero nos las hemos arreglado para arruinar el uso estándar. Una caloría se define como la cantidad de energía que se requiere para elevar la temperatura de un mililitro de agua un grado Celsius.3 Es una cantidad diminuta de energía; demasiado pequeña para ser útil cuando hablamos de comida (es como si midiéramos las distancias de las carreteras en centímetros). Por el contrario, cuando hablamos de “calorías” de los alimentos en realidad nos referimos a kilocalorías, es decir 1,000 calorías. Una taza de Cheerios secos contiene 100 calorías según la etiqueta nutricional de la caja, pero en realidad se refiere a 100 kilocalorías, es decir 100,000 calorías.
Entonces, ¿por qué no decimos “kilocalorías” o “kcal” en vez de abusar del término caloría y ya? Curiosamente, a finales del siglo XIX, cuando los científicos decidieron adoptar las “calorías” como unidad predilecta de medida de la energía de los alimentos, el influyente y visionario nutricionista estadunidense Wilbur Atwater decidió conservar una convención arcaica y ponerle mayúscula a “Calorías” cuando se refería a las kilocalorías.4 Eso es como poner “Metro” en mayúsculas cuando hablas de kilómetros (no tiene sentido). Desde entonces arrastramos este confuso empleo de las calorías en nuestras etiquetas. Por supuesto ésta es sólo una raya más al tigre de la larga y vergonzosa historia de las medidas en Estados Unidos. Un país que insiste en usar cucharaditas, pulgada y grados Fahrenheit obviamente tiene profundos problemas psicológicos para discutir sobre sus unidades (por cierto, si viajas a un país civilizado y quieres convertir los joules de sus etiquetas de comida a calorías,5 divídelos entre cuatro).
Puesto que el trabajo y la energía son dos caras de la misma moneda, podemos pensar que todo el trabajo que realizan nuestras células y toda la energía que consumen son dos formas de medir lo mismo. Podemos usar “metabolismo” y “gasto energético” en forma intercambiable. Por eso los biólogos evolutivos como yo, así como los médicos y los expertos en salud pública, están tan obsesionados con el gasto energético, que es la forma en la que medimos el metabolismo: es la medida fundamental de la actividad del cuerpo. La velocidad a la que la célula realiza su trabajo determina la tasa metabólica, la cantidad de energía usada por minuto. Si sumas el trabajo de todas las células de tu cuerpo obtienes tu tasa metabólica, la energía que gastas por minuto. Tu tasa metabólica es la potencia de tu orquesta celular (37 billones de músicos microscópicos que tocan una complicada sinfonía).
El sofisticado sistema metabólico que nos mantiene vivos, y que todos damos por hecho, es una maravilla de la evolución. Hicieron falta 1,000 millones de años —infinidad de generaciones, de salidas falsas y callejones sin salida— para que evolucionara en este planeta el esquema básico del sistema metabólico, incluso el de los seres unicelulares más sencillos, una eternidad de prueba y (sobre todo) error. Tomó otros 2,000 millones de años que evolucionaran los organismos multicelulares simples, con sus sistemas metabólicos integrados y su división del trabajo. Por el camino la vida enfrentó algunos desafíos importantes de química básica. Los aceites tuvieron que mezclarse con el agua. El oxígeno, una sustancia química que quema y mata, tuvo que ser aprovechado por los seres vivos. Las grasas y los azúcares, que almacenan más energía por gramo que la nitroglicerina, tuvieron que quemarse cuidadosamente como combustible sin hacer estallar a los organismos o hervirlos en su jugo.
Y esto no es lo más extraño. Todo el trabajo que realizan nuestros cuerpos es impulsado por microscópicos seres extraterrestres llamados mitocondrias que viven dentro de tus células. Las mitocondrias tienen su propio ADN y su propia historia evolutiva de 2,000 millones de años, que incluye haber salvado a la Tierra de un destino fatal. Y buena parte del trabajo que se realiza para que digieras tu comida ocurre gracias a un enorme ecosistema que vive en tus intestinos. Este microbioma está formado por billones de bacterias que viven en tu aparato digestivo, el largo y serpenteante conducto que conecta tu boca con tu trasero.
Todos somos quimeras andantes que realizan el milagro cotidiano de convertir alimento muerto en gente viviente. Es una historia que seguramente escuchaste antes, quizá despojada de toda la magia y servida fría en un libro de texto. Pero vale la pena prestarle atención una vez más, al menos porque es fundamental para que entiendas cómo la dieta afecta tu salud y cómo tu cuerpo quema energía: cómo funciona la vida.
EL SOYLENT GREEN DE VERDAD ESTÁ HECHO
DE GENTE (O PODRÍA ESTARLO)
Al menos desde la época de los antiguos griegos y tan recientemente como el siglo XVII, la gente —incluyendo gente muy inteligente como Aristóteles— pensaba que las moscas, los ratones y otros organismos podían crecer espontáneamente a partir de objetos inanimados como el polvo y la carne podrida. Tenía sentido: un día tenías una pila de trapos viejos y algo de heno en el rincón del granero y al día siguiente había ratones. Los gusanos parecían salir a raudales de los viejos cadáveres sin que nadie los pusiera ahí. Sin nociones sólidas sobre el mundo microscópico o una experimentación rigurosa parecía una idea difícil de refutar; no terminó de morir sino hasta el revolucionario experimento de Louis Pasteur en 1859, para el cual hizo hervir caldo y demostró que nada crecía en él si mantenía fuera el polvo y los bichos (desde entonces pasteurizamos nuestra comida). Hoy la idea de la “generación espontánea” se le enseña a los niños como un ejemplo clásico de lo ignorante que era la gente y lo lejos que ha llegado la ciencia.
Por supuesto es absurdo sugerir que las moscas pueden emerger espontáneamente de un cadáver. Pero como hemos descubierto gracias a la investigación sobre el metabolismo del último siglo, la verdad es aún más extraña. Los animales, las plantas y todos los demás seres vivos somos básicamente “máquinas de generación espontánea” que construyen sus cuerpos y los de sus descendientes a partir de alimento, agua y aire. ¿Qué es una mosca, después de todo, sino una maquinita que construye moscas bebés6 a partir de carne podrida?
En la clásica Cuando el destino nos alcance, una película de ciencia ficción de 1973 situada en un futuro distópico en Nueva York, al personaje de Charlton Heston le horroriza descubrir que la papilla verde que comen todos en realidad está hecha de humanos. En la dramática escena final grita, al tiempo que se lo llevan lejos, “¡Soylent Green está hecho de gente!”. Saltemos al año 2018, cuando en un ejemplo de la vida que capitaliza el arte puedes comprar mezclas de alimentos marca Soylent: tubos de pasta viscosa llena de nutrientes que buscan reemplazar la comida normal para gente ocupada o sin amigos para el almuerzo. No tengo idea de cómo sepa, pero existe una variedad de Soylent Green. Ahora bien, estoy seguro de que el Soylent Green que compras en línea en estos días no es gente. Pero la cosa es que podría serlo: todo lo que tienes que hacer es comértelo.
Cada molécula de tu cuerpo, cada kilo de hueso y músculo, cada gramo de cerebro y de riñón, cada uña y pestaña, los cinco litros de sangre que corren por tus venas, todo está ensamblado a partir de componentes de los alimentos que has comido. La energía que te mantiene vivo y en movimiento también proviene de tu dieta. Lo de que eres lo que comes no sólo es una frase hecha muy gastada: así funciona la vida. A uno le dan escalofríos de pensar en la gran proporción de estadunidenses que literalmente son una pila de Big Macs reconvertidas que hablan y caminan. Mis hijos están construidos y accionados casi completamente por nuggets de pollo, pasta, yogur y zanahorias. Yo mismo corro en buena medida a punta de pretzels y cerveza. Pero ¿cómo funciona?
SIGUE LA PIZZA
Comencemos con el almuerzo. Estás sentado frente a una rebanada caliente y lustrosa de pizza de pepperoni (para este experimento mental los veganos pueden sustituir el queso y la carne por alternativas vegetales). Le das una mordida y empiezas a masticar esa suntuosa mezcla de pan, salsa, carne y queso que baila en tus papilas gustativas; el pan cruje en tus dientes; el olor flota hasta el fondo de tu paladar y llena tu nariz. Es una experiencia trascendental.
La alquimia acaba de comenzar. Masticar y mezclar los alimentos con la saliva es el primer paso en la digestión de tu comida y sus principales componentes, los macronutrientes. Hay tres categorías de macronutrientes: los carbohidratos, las grasas y las proteínas. Los carbohidratos son almidones, azúcares y fibra. Provienen fundamentalmente de las fracciones vegetales de tu comida: la corteza y la salsa de tomate de la pizza que estás comiendo. Las grasas (incluyendo los aceites) vienen de fuentes tanto vegetales como animales, en este caso el queso y el pepperoni de tu rebanada. Las proteínas se encuentran sobre todo en los tejidos animales y en las hojas, tallos y semillas de las plantas (incluyendo frijoles, nueces y granos). El pepperoni y el queso están llenos de proteínas, y lo mismo las hojas de albahaca que aromatizan la pizza. También hay proteínas en la corteza, incluyendo el muy calumniado gluten que la hace elástica.
Asimismo hay agua atrapada en la rebanada, así como rastros de otras sustancias como minerales, vitaminas y diversos elementos que necesita tu cuerpo. Pero los macronutrientes —carbohidratos, grasas y proteínas— son la principal atracción. Son lo que construye e impulsa tu cuerpo. Son la materia prima del metabolismo.
El diagrama de flujo de la figura 2.1 muestra a qué parte de tu cuerpo van los carbohidratos, las grasas y las proteínas, y qué hace cada uno. Imagina que es un mapa del Metro de macronutrientes; al principio es difícil de leer, pero una vez que sigues cada línea de origen a destino resulta mucho más fácil. Cada macronutriente tiene su propia línea, y cada línea hace tres paradas: digestión, construcción y quema. Como todo buen sistema de tránsito, hay ramales que pueden llevarte de una línea a otra. ¡En marcha!
Carbohidratos
En la dieta típica estadunidense los carbohidratos representan la mitad de las calorías que se consumen al día. De hecho, a pesar de la reciente popularidad de las dietas bajas en carbohidratos los humanos de todas las culturas y latitudes, incluyendo a cazadores-recolectores como los hadza, suelen obtener más calorías de los carbohidratos que de las grasas o las proteínas (capítulo 6). Después de todo somos primates, y los primates comen plantas, en particular frutas dulces y maduras. Los carbohidratos son nuestra principal fuente de combustible. Hemos dependido de ellos durante 65 millones de años.7
Los carbohidratos vienen en tres formas principales: azúcares, almidones y fibra. Los azúcares y los almidones se digieren, y o bien se usan para construir reservas de glucógeno o se queman para obtener energía (ver figura 2.1). También pueden convertirse en grasa, como veremos más adelante. La fibra es otro bicho, con un importante papel en la regulación de la digestión, la absorción de azúcares y almidones en el aparato digestivo y la alimentación de billones de bacterias y otros seres que viven en nuestro microbioma intestinal. De hecho, el microbioma desempeña un papel esencial en la digestión de la fibra, y sin él estamos en problemas. Pero primero sigamos a los almidones y los azúcares.
Figura 2.1. Mapa del Metro de los macronutrientes. Cada macronutriente (carbohidrato, grasa, proteína) tiene su propia ruta en el cuerpo, y cada uno hace tres paradas principales: digestión, construcción y quema. Las flechas de un solo sentido indican caminos unidireccionales. Las dobles indican caminos que corren en ambas direcciones. Se omitieron algunas rutas para simplificar el diagrama. La digestión de fibra que efectúa el microbioma produce ácidos grasos que se unirán a la ruta de las grasas. Los azúcares se emplean para construir algunas estructuras del cuerpo, como el ADN. No se muestran aquí las rutas principales mediante las cuales los aminoácidos pueden convertirse en glucosa o cetonas. La galactosa, el producto menos común de la digestión de los carbohidratos, también se omite.
e–: electrones. H+: iones hidrógeno.
Los azúcares son, sencillamente, carbohidratos pequeños: cadenitas de átomos de carbono, hidrógeno y oxígeno. Los más pequeños están formados por una sola molécula (de aquí el prefijo mono en su nombre técnico, monosacáridos; sacárido significa azúcar). Los monosacáridos son la glucosa, la fructosa y la galactosa. Los otros azúcares —la sacarosa, la lactosa y la maltosa— están formados por dos monosacáridos pegados y se llaman disacáridos (“dos azúcares”). La sacarosa (el azúcar de mesa) es una glucosa y una fructosa unidas. La lactosa (el azúcar de la leche) está hecha de glucosa y galactosa. La maltosa son dos glucosas.
Los almidones son simples grupos de moléculas de azúcar unidas en una larga cadena. Como hay tantas moléculas de azúcar juntas los almidones también se llaman polisacáridos (“poli” significa muchos) o carbohidratos complejos. La molécula de azúcar más común en el almidón vegetal es, por mucho, la glucosa; las moléculas de almidón vegetal pueden tener cientos de moléculas de glucosa de largo. El almidón es la forma que tienen las plantas de almacenar energía, y es por esto que se encuentra en grandes cantidades en los órganos de almacenamiento de energía de las plantas, como las papas o los camotes. Casi todo el almidón vegetal (el almidón de nuestra comida) es una mezcla de sólo dos polisacáridos llamados amilosa y amilopectina.
Sin importar de qué alimentos provengan, al digerirlos, los almidones y los azúcares se convierten en uno de tres monosacáridos. El almidón comienza a ser digerido en tu boca con una enzima de la saliva llamada amilasa que da inicio al proceso de romper las largas moléculas de amilosa y amilopectina en trozos más y más pequeños. Las enzimas son proteínas que rompen moléculas o promueven reacciones químicas (sus nombres suelen terminar en asa). Las enzimas digestivas, como la amilasa, cortan las moléculas de alimento en trozos cada vez más pequeños. Los almidones han sido tan importantes durante la evolución humana que evolucionamos para fabricar más amilasa que cualquier otro simio, como discutiremos en el capítulo 6.
Una vez que tragas el suave bolo alimenticio éste termina en tu estómago, donde el ácido mata las bacterias y otros posibles polizones en tu comida. Después la mezcla es empujada del estómago hacia el intestino delgado, donde ocurre la mayor parte de la digestión. En el intestino delgado los almidones y los azúcares se encuentran con enzimas producidas por el intestino y el páncreas, que las desintegran aún más. El páncreas, un órgano de unos 12 centímetros de largo y con forma de chile delgado, descansa justo bajo el estómago y se conecta con el intestino delgado a través de un pequeño ducto. Tiene fama de producir insulina, pero también produce la mayor parte de las decenas de enzimas necesarias para la digestión (así como bicarbonato, que neutraliza los ácidos del estómago cuando entran al intestino). Tus genes controlan el ensamblaje de estas enzimas (en su forma y disposición particular) y los niveles de producción (si se hace mucho o poco de una enzima particular). Por ejemplo, si eres intolerante a la lactosa y no puedes digerir la leche significa que tus genes cerraron el armado y producción de la enzima lactasa, que es necesaria para romper el disacárido lactosa en sus componentes, glucosa y galactosa. Ninguna otra enzima puede hacer ese trabajo, así que la lactosa se dirige entera hacia el intestino grueso y provoca entre las bacterias un frenesí alimentario que produce mucho gas y los otros encantadores efectos de la intolerancia a la leche.
La digestión de los almidones y los azúcares continúa hasta que todos los polisacáridos y disacáridos se descomponen en monosacárido. Puesto que buena parte de los carbohidratos de tu dieta provienen del almidón, y el almidón está hecho totalmente de glucosa, cerca de 80 por ciento de los almidones y azúcares que comes8 terminan en forma de glucosa. El resto se descompone en fructosa (cerca de 15 por ciento) o galactosa (cerca de 5 por ciento). Por supuesto, si tienes una dieta alta en alimentos procesados llenos de azúcares (por ejemplo sacarosa, que es glucosa más fructosa) o jarabe de maíz de alta fructosa (que es cerca de 50 por cierto fructosa y 50 por ciento glucosa mezclada con agua) el porcentaje de fructosa puede ser un poco más alto en tu caso, y el porcentaje de glucosa un poco más bajo.
Los azúcares se absorben en las paredes del intestino y entran al torrente sanguíneo. Las paredes de nuestros intestinos están repletas de vasos, y el flujo sanguíneo hacia nuestro aparato digestivo aumenta más del doble9 tras una comida para poder llevarse todos los nutrientes. El resultado es el famoso aumento del azúcar en la sangre (casi toda glucosa) tras los alimentos, particularmente si fueron altos en carbohidratos. Si lo que comes está procesado, es bajo en fibra y resulta fácil de digerir los carbohidratos se absorben rápidamente, y los azúcares se precipitan hacia nuestra sangre y crean un pico enorme y abrupto de azúcar en la sangre. Se dice que esos alimentos tienen un alto índice glicémico, es decir, el aumento de la glucosa en la sangre medido dos horas después de tomar un alimento en particular, comparado con el aumento que experimentarías al ingerir glucosa pura. Los alimentos más difíciles de digerir (con más carbohidratos complejos, menos azúcar y más fibra) tardan más en absorberse y producen un aumento más largo y atenuado de azúcar en la sangre, así como un bajo índice glicémico. En el capítulo 6 hablaremos sobre dietas, pero existe evidencia de que los alimentos con bajos índices glicémicos pueden ser mejores para la salud.10
Los héroes anónimos de este trabajo digestivo son la fibra dietética y tu microbioma. La fibra es un tipo de carbohidrato (existen muchas variedades de fibra) que nuestro cuerpo no puede digerir… al menos no por sí mismo. Estas largas y resistentes moléculas son lo que le otorga a las plantas parte de su fuerza y estructura. La fibra de nuestros alimentos cubre las paredes intestinales como una cobija mojada, formando un filtro poroso que desacelera la absorción de azúcares y otros nutrientes hacia el torrente sanguíneo. Por eso el índice glicémico —la avalancha de azúcares hacia la sangre— es 25 por ciento mayor en el jugo de naranja, que no tiene mucha fibra, que en un gajo que naranja, que sí la tiene.11
La fibra también alimenta el microbioma, el húmedo ecosistema de organismos que viven en nuestro aparato digestivo y nos ayudan a digerir la comida. La mayor parte del microbioma habita en el intestino grueso o colon, donde desempeña un papel crucial encargándose de la fibra y de otras cosas que no podemos digerir en el intestino delgado. Apenas hemos comenzado a apreciar la importancia del microbioma, pero su escala es sorprendente. Con billones de bacterias,12 cada una con sus miles de genes propios, el microbioma es como un superorganismo de dos kilogramos de peso13 que vive en tu interior. Estas bacterias digieren buena parte de la fibra que comemos empleando enzimas que nuestras propias células no pueden fabricar y produciendo ácidos grasos de cadena corta que nuestras células absorben y usan para obtener energía. Nuestro microbioma también digiere otras cosas que escapan al intestino delgado, contribuye con la actividad del sistema inmunitario, ayuda a producir vitaminas y otros nutrientes esenciales y mantiene en buen estado el aparato digestivo. Tiene efectos de gran alcance en nuestra salud, desde la obesidad hasta las enfermedades autoinmunitarias, y todos los días se descubre alguno nuevo. Lo que hoy sabemos con certeza es que si tu microbioma no está contento tú no estás contento.
La principal razón por la que comemos y ansiamos carbohidratos, su motivo para existir en lo que a nuestras células respecta, es ser el combustible de nuestros cuerpos. Los carbohidratos son energía.14 Una vez que los azúcares se absorben en el torrente sanguíneo pueden tener uno de dos destinos: quemarse de inmediato o almacenarse para después (figura 2.1). Aquí entra la hormona insulina, producida por el páncreas. La mayor parte de las células necesitan insulina para absorber las moléculas de glucosa a través de sus membranas.
Quemar carbohidratos para obtener energía es un proceso de dos fases que discutiremos detalladamente más adelante. El azúcar en la sangre que no se quema de inmediato se guarda en reservas de glicógeno en tus músculos e hígado. El glicógeno es un carbohidrato complejo parecido al almidón de las plantas. Es relativamente fácil de aprovechar, pero relativamente pesado porque contiene la misma proporción de carbono que de agua (de aquí el término carbohidrato). Es como sopa enlatada: fácil de preparar pero pesada y estorbosa porque se almacena con todo y agua. Los humanos, como otros animales, hemos evolucionado con límites estrictos para la cantidad de glicógeno que pueden contener nuestros cuerpos. Una vez que se llenan esos baldes el azúcar en la sangre tiene que ir a otro lado. Y el único lugar que queda disponible es la grasa.
Cuando se satisfacen las necesidades energéticas de tu cuerpo y se llenan tus reservas de glicógeno el exceso de azúcar en tu sangre se convierte en grasa, como discutiremos más adelante. Las reservas de grasa son un poco más difíciles de usar como combustible; se necesitan más pasos intermedios para convertirlos en una forma que se pueda quemar. Pero la grasa es un sistema de almacenamiento de energía mucho más eficiente que el glicógeno, porque es densa y no retiene agua. Y como sabemos demasiado bien, prácticamente no existen límites para la cantidad de grasa que pueden almacenar nuestros cuerpos.
Grasas
Las grasas tienen un itinerario bastante simple: se digieren en forma de ácidos grasos y glicéridos y luego se vuelven a construir en forma de grasa en tu cuerpo, que eventualmente se quema para obtener energía. Pero el desafío es que las grasas son difíciles de digerir. No es más que química básica: el aceite y el agua no se mezclan. Las grasas (incluidos los aceites) son moléculas hidrofóbicas, es decir, que no se disuelven en agua. Pero como toda la vida en la Tierra, nuestros cuerpos tienen como base el agua. No se pueden descomponer grandes gotas de aceite en trocitos microscópicos usando únicamente agua; es como tratar de limpiar una olla grasosa sin usar jabón. ¿La solución evolutiva? La bilis.
Durante mucho tiempo se pensó que la bilis era uno de los cuatro humores que desempeñan un papel en nuestros estados de ánimo y temperamentos, un divertido ejemplo de cómo las personas listas podían creer cosas muy tontas. Gente muy inteligente, desde Hipócrates hasta los médicos y fisiólogos del siglo XVII, pensaban que demasiada bilis amarilla volvía agresiva a la gente. Si sospechaban que eran víctimas de un desequilibrio humoral los doctores sangraban a la gente con sanguijuelas, una de las razones por las que probablemente mataban más gente de la que salvaban hasta que llegó la medicina moderna, hace más o menos un siglo. Hoy sabemos que la bilis es la sustancia que nos ayuda a digerir la grasa.
La bilis es un líquido verde que produce tu hígado15 y que se almacena en tu vesícula, una bolsita del tamaño de un pulgar que descansa entre el hígado y el intestino delgado y se conecta a ambos por pequeños conductos. Cuando las grasas entran al intestino delgado procedentes del estómago la vesícula arroja un chorrito de bilis en la papilla de alimentos. Los ácidos biliares (también llamados sales biliares)16 actúan como detergentes y descomponen las gotas de grasas y aceites en pequeñas gotitas emulsificadas. Una vez que la grasa se emulsifica, se añaden a la mezcla enzimas llamadas “lipasas”, producidas por el páncreas, que rompen estas gotas emulsificadas en trozos aún más pequeños: gotitas microscópicas llamadas micelas que miden una centésima del diámetro de un cabello humano. Estas micelas se forman, se rompen y vuelven a formarse como las burbujas en una bebida carbonatada. Cada vez que se rompen liberan los ácidos grasos y los glicéridos (que son ácidos grasos unidos a una molécula de glicerol) individuales que contenían. Éstos son los bloques de construcción fundamentales de las grasas y los aceites.
Los ácidos grasos y los glicéridos son absorbidos en la pared intestinal y vuelven a constituirse en forma de triglicéridos (tres ácidos grasos unidos como listones a una molécula de glicerol), la configuración estándar de las grasas en el cuerpo. Aquí el cuerpo enfrenta su siguiente desafío para la digestión de las grasas: como no se mezclan bien con el agua tienden a formar grumos en las soluciones base agua como la sangre. Los grumos en la sangre te matarían al obstruir los pequeños vasos de tu cerebro, pulmones y otros órganos. La evolución lo ha solucionado empacando los triglicéridos en contenedores esféricos llamados quilomicrones. Esto evita que las grasas se aglutinen, pero producen un paquetito demasiado grande para que lo absorban los vasos capilares hacia el torrente sanguíneo, que es a donde deben ir para distribuirse por todo el cuerpo.
Entonces, las moléculas de grasa, empacadas en forma de quilomicrones, se depositan en los vasos linfáticos. Estos vasos, parte sistema de vigilancia, parte sistema de recolección de basura, tienen su propia red por todo tu cuerpo; se encargan de recoger desechos, bacterias y otros detritos y de llevarlos a los nódulos linfáticos, el bazo y otros órganos del sistema inmunitario para que se encarguen de ellos. Están bien adaptados para recoger partículas grandes como los quilomicrones repletos de grasa. Los vasos linfáticos también recolectan todo el plasma que se escapa de tus vasos sanguíneos (casi tres litros diarios) y lo devuelve a tu sistema circulatorio, de modo que ofrece un portal de entrada al torrente sanguíneo. Unos vasos linfáticos especializados, llamados lácteos, embebidos en las paredes intestinales, absorben quilomicrones hacia el sistema linfático y los depositan directamente en el sistema circulatorio, antes de llegar al corazón.
Los quilomicrones, blancos y gordos, son tan grandes y abundantes después de una comida grasosa que pueden darle a la sangre un tono acremado. Pero con el tiempo son despedazados y sus contenidos arrastrados hasta las células expectantes, donde son almacenados o empleados. La lipoproteína lipasa, una enzima en las paredes de los vasos sanguíneos, primero descompone los triglicéridos en ácidos grasos y glicerol, que son absorbidos por las células en espera con ayuda de las bien bautizadas moléculas transportadoras de ácidos grasos antes de volver a ser ensambladas en forma de triglicéridos. La mayor parte de las grasas se almacena en células adiposas (adipocitos) y músculos, donde forman un tanque de combustible de reserva. Estos triglicéridos almacenados son la grasa que sentimos en nuestra barriga y muslos, o la que vemos en un suculento bistec marmoleado. Los problemas empiezan cuando nuestros cuerpos empiezan a almacenar grandes cantidades de grasa en nuestro hígado y otros órganos, lo que puede conducir a fallas hepáticas y muchos otros problemas de salud. No se conocen bien las causas del hígado graso, pero la obesidad es un importante factor de riesgo.17
Una pequeña fracción de las grasas que ingerimos se usa para construir estructuras como membranas celulares, las vainas de mielina que recubren nuestros nervios y partes de nuestros cerebros. Una porción de los ácidos grasos necesarios para construir estos tejidos no puede armarse a partir de otros, por lo que se consideran ácidos grasos esenciales: debes obtenerlos de tu comida. Por eso los productores de alimentos con frecuencia pregonan el contenido de ácidos grasos omega-3 (un ácido graso esencial) en su pescado, leche o huevos.
Como ocurre con los carbohidratos, el destino final de la grasa —la razón por la que la buscas con avidez y tu cuerpo se toma la considerable molestia de digerirla y almacenarla— es ser quemada como combustible. Todos los animales han evolucionado para almacenar la energía en forma de grasa porque contiene una cantidad increíble de energía en un pequeño paquete: 9 calorías por gramo. Es decir, lo mismo que el combustible para jet, cinco veces más que la densidad energética de la nitroglicerina y casi cien veces más que una típica pila alcalina.18 Por fortuna el proceso de descomponer grasas para obtener energía es más lento que el de la dinamita. Algunas grasas se queman inmediatamente después de la digestión, recién llegadas del aparato digestivo. Pero la mayor parte del tiempo, entre comidas, tu cuerpo usa como combustible sus grasas almacenadas. Los triglicéridos que conforman tu almacén de grasa se descomponen en ácidos grasos y glicerol y se emplean para crear energía (figura 2.1), como veremos con detalle más adelante.
Proteínas
Las proteínas tienen un itinerario interesante. A diferencia de las grasas y los carbohidratos, las proteínas no son una fuente primaria de energía (a menos que seas carnívoro). El papel principal de las proteínas es construir y reconstruir diariamente tus músculos y otros tejidos a medida que se desgastan. Tu cuerpo sí quema algunas proteínas para obtener energía, pero es una contribución menor a tu presupuesto energético diario.
La digestión de las proteínas comienza en el estómago con una enzima llamada pepsina, que comienza a descomponerlas. Las células de las paredes de tu estómago producen una enzima precursora llamada pepsinógeno que el ácido del estómago transforma en la enzima pepsina, el Edward Manos de Tijera de todas las proteínas con las que entra en contacto. A medida que la comida abandona el estómago este proceso continúa en el intestino delgado con enzimas secretadas por el páncreas.
Todas las proteínas se digieren hasta llegar a sus bloques de construcción básicos: los aminoácidos. Los aminoácidos son una clase de moléculas con una forma parecida a una cometa: una cabeza y una cola. Todas tienen la misma cabeza: un grupo amino que contiene nitrógeno conectado a un ácido carboxílico. Los aminoácidos se distinguen por sus colas, que siempre están formadas por alguna configuración de átomos de carbono, hidrógeno y oxígeno. Existen cientos de aminoácidos en la Tierra, pero sólo se usan 21 para construir proteínas en las plantas y los animales. Nueve de éstos se consideran esenciales para los humanos, es decir, que nuestro cuerpo no puede fabricarlos por su cuenta; debemos obtenerlos a partir de nuestra dieta (no te preocupes; si sigues vivo quiere decir que de algún lado los sacas). Tu cuerpo puede fabricar el resto si es necesario, por lo general descomponiendo y reformulando otros aminoácidos. Pero nos estamos adelantando.
La siguiente parada para los aminoácidos es construir los tejidos y otras estructuras que conforman la máquina humana (figura 2.1). Una vez que digerimos las proteínas de nuestra rebanada de pizza y las convertimos en aminoácidos, los absorbemos a través de las paredes del intestino delgado, desde donde entran al torrente sanguíneo. Las células absorben los aminoácidos que circulan por la sangre y los usan para construir proteínas, que son cadenas de aminoácidos unidos. La construcción de proteínas a partir de aminoácidos es una de las tareas primordiales del ADN. Un gen no es más que una hebra de ADN conformada por una secuencia particular de aminoácidos para hacer una proteína19 (algunos genes son reguladores, es decir, que ellos mismos no arman proteínas sino que activan o suprimen los genes que sí lo hacen). Las variantes en la secuencia de ADN (las hebras de As, Ts, Cs y Gs) pueden producir alineaciones distintas de aminoácidos y, así, proteínas ligeramente diferentes que contribuyen a las variaciones biológicas entre individuos. Los aminoácidos también se usan para hacer muchas otras moléculas, como la epinefrina, la hormona involucrada en la respuesta de lucha o huida, y la serotonina, uno de los neurotransmisores que usan nuestras neuronas para comunicarse.
Estos mismos tejidos y moléculas se descomponen con el tiempo.20 A la larga vuelven a convertirse en aminoácidos y viajan por la sangre hasta el hígado. Aquí las cosas se ponen un poco complicadas. El grupo amino de los aminoácidos tiene una estructura muy similar, NH2, al amoniaco. Del mismo modo que beber un limpiador de amoniaco te mataría sin duda, la acumulación de amoniaco por la degradación de aminoácidos resultaría fatal. Por suerte la evolución nos ha dotado de un mecanismo para convertir ese amoniaco en urea, que viaja por el torrente sanguíneo hasta los riñones para ser excretado con la orina. La urea de nuestra orina es lo que le da ese olorcito acre tan intenso, lo cual tiene sentido porque está hecha de amoniaco.
Orinamos el equivalente de 50 gramos de proteína al día. El ejercicio incrementa esa cantidad porque fomenta la descomposición de los músculos. Tenemos que comer suficientes proteínas para reemplazar las que perdemos todos los días si no queremos sufrir un déficit proteico. Si comemos más proteína de la que necesitamos los aminoácidos extra se convierten en urea y se van con la orina, así que si te excedes en el consumo de suplementos alimenticios podrías sólo estar fabricando orina cara.
La última parada en la línea del tren de las proteínas es quemar aminoácidos como combustible (figura 2.1). Una vez que se corta la cabeza que contiene nitrógeno, se convierte en urea y se despacha, las colas se usan para hacer glucosa (en un proceso llamado gluconeogénesis, que literalmente significa “hacer azúcar nueva”) o cetonas, y ambas pueden usarse para obtener energía, como veremos más adelante. Las proteínas suelen ser una fracción menor del presupuesto energético diario, pues representan cerca de 15 por ciento de nuestras calorías diarias.21 Pero si nos estamos muriendo de hambre se convierten en un suministro de energía de emergencia de vital importancia, un poco como echar los muebles a la chimenea para calentar tu casa. Los personajes esqueléticos de los campos de concentración son un ejemplo terrorífico de este proceso llevado al extremo en el que sus cuerpos se consumieron a sí mismos en un esfuerzo desesperado por mantenerse con vida.
ARDE, BABY, ARDE
Todos los caminos de nuestro mapa metabólico conducen, con el tiempo, al mismo lugar: combustible. Las moléculas de carbohidratos, grasas y proteínas almacenan energía química en los enlaces que las mantienen juntas. Romper esos enlaces libera esa energía y nosotros la usamos para mover nuestro cuerpo.
En todos los sistemas biológicos, incluidos nuestros cuerpos, la energía tiene una forma común fundamental: el trifosfato de adenosina, ATP. Las moléculas de ATP son como microscópicas pilas recargables, que se “cargan” al añadir una moléculas de fosfato a una molécula de difosfato de adenosina, ADP (nótense el “tri” y el “di” de sus nombres, que indican que el ATP tiene tres fosfatos contra dos del ADP). Un gramo de ATP contiene unas 15 calorías de energía (ésas son calorías, no kilocalorías), y el cuerpo humano sólo contiene unos 50 gramos de ATP en un momento dado. Eso quiere decir que cada molécula pasa de ADP a ATP y de regreso22 unas 3,000 veces al día para hacer funcionar nuestro cuerpo. Así, quemar carbohidratos, grasas y proteínas consiste en el proceso de transferir la energía química de las moléculas de azúcares, grasas y aminoácidos al enlace químico que contiene el tercer fosfato en las moléculas de ATP. Cuando usamos energía para producir energía en realidad estamos haciendo ATP.
Comencemos con una molécula de glucosa, la forma de energía predominante que usan nuestros cuerpos (la historia es básicamente la misma para la fructosa y la galactosa).23 Esta molécula de glucosa puede provenir directamente de los carbohidratos que acabamos de comer o del glicógeno almacenado que se ha reconvertido en glucosa. Como empezamos a discutir al final de la sección sobre carbohidratos, quemar azúcares para obtener energía es un proceso de dos etapas. Primero, la glucosa (C6H12O6) se convierte en una molécula llamada piruvato (C3H4O3) en un proceso de diez pasos accionado por dos moléculas de ATP, pero que produce cuatro moléculas de ATP, lo que resulta en una ganancia neta de dos ATP. Es un proceso relativamente rápido y lo empleamos para impulsar explosiones breves de energía, como una carrera de 100 metros o una sesión de pesas en el gimnasio, intensa pero corta.
Esta primera etapa del metabolismo se llama anaeróbica porque no requiere oxígeno, como puedes apreciar cuando ves las Olimpiadas en la televisión: los corredores de élite casi no parecen respirar, y los pesistas aguantan la respiración. Si no hay suficiente oxígeno presente, ya sea porque no estamos respirando en forma efectiva o (lo que es más probable) porque nuestros músculos están trabajando demasiado duro y demasiado rápido para que el suministro de oxígeno le siga el paso a todo el piruvato que se produce, el piruvato se convierte en lactato. El lactato puede reconvertirse en piruvato para ser usado como combustible, pero si se acumula también puede transformarse en el temido ácido láctico, que hace que nuestros músculos ardan cuando nos ejercitamos muy intensamente y nos esforzamos al límite.
La segunda etapa, el metabolismo aeróbico, es donde necesitamos oxígeno. Si hay suficiente oxígeno en la célula el piruvato producido al final de la primera etapa es llevado a una cámara dentro de la célula llamada mitocondria. En una célula típica hay decenas de mitocondrias, y se les conoce como las plantas de energía de la célula porque la mayor parte de la producción de ATP sucede en su interior. Aquí es donde ocurre la magia, la coreografía química que nos mantiene con vida. Dentro de las mitocondrias el piruvato se convierte en acetil coenzima o acetil-CoA, que compite con el ATP por el título de la sustancia química más importante de la que tal vez nunca oíste hablar u olvidaste por completo. El acetil CoA es como un vagón de tren lleno de pasajeros —átomos de carbono, hidrógeno y oxígeno— pero sin una locomotora que los jale. Entonces viene el oxalacetato, que se sujeta al acetil CoA y comienza a jalarlo a lo largo de una vía circular llamada el ciclo de Krebs.24 El tren hará ocho paradas, y en cada una bajarán o subirán algunos de los carbonos, hidrógenos y oxígenos pasajeros. Las idas y venidas de estos átomos generan dos ATP. Para la última parada sólo queda la locomotora de oxalacetato, que se sujeta a otro acetil CoA, y el ciclo se repite.
Es importante señalar que cuando suben o bajan del tren del ciclo de Krebs algunos pasajeros son asaltados: las moléculas NADH y FADH los despojan de sus electrones. Estas moléculas de NADH y FADH se escabullen por los callejones de las mitocondrias y descargan los electrones que hurtaron en un complejo receptor especial de la membrana: una puerta en la pared. Las mitocondrias son estructuras de pared doble, como un termo; entre la membrana interna y la externa existe un pequeño espacio llamado espacio intermembrana. Cuando los electrones robados se depositan en el complejo de la membrana interna, unos iones de hidrógeno con carga positiva (de los que hay un abundante suministro) persiguen los electrones cargado negativamente y terminan atrapados en el espacio intermembrana. Los iones de hidrógeno son como peces atrapados en un dique: fluyen a través de la membrana interior, jalados por el electrón, sólo para verse atrapados en el atiborrado interior del espacio intermembrana.
Con todos estos iones de hidrógeno con carga positiva juntos se produce una fuerza electroquímica que los saca de equilibrio, ya sea fuera o dentro de la membrana interior. Pero sólo hay una forma de que los iones de hidrógeno escapen del espacio de la membrana interior: un portal especial en la membrana interior que tiene la estructura de un torniquete. Los iones de hidrógeno fluyen por el torniquete, impulsados por la carga eléctrica. Cuando el torniquete gira obliga al ADP y a las moléculas de fosfato a unirse, produciendo ATP. Aquí es donde ocurre la acción: se producen 32 ATP. La compleja coreografía de los electrones y los iones de hidrógeno bailando por la membrana interior, llamada fosforilación oxidativa, es el principal generador de energía para tu cuerpo.
¿Y qué pasa con la molécula de glucosa misma, con los átomos de carbono, oxígeno e hidrógeno con los que comenzamos? Recuerda que lo que usamos para cargar nuestro ATP es la energía en los enlaces que mantienen unidos estos átomos, no los átomos mismos.25 Así pues, los átomos de carbono y de oxígeno, que constituyen hasta 93 por ciento de la masa de una molécula de glucosa, se transforman en dióxido de carbono (CO2) durante la conversión de glucosa a piruvato y en el ciclo de Krebs. Los hidrógenos se unen al oxígeno al final de la fosforilación oxidativa, formando agua, H2O. Comemos carbohidratos sólo para terminar exhalándolos, llenando el aire que nos rodea con esqueletos de papas podridas; la fracción restante termina como gotas de agua en el océano de nuestro cuerpo.
QUEMAR GRASA, ENGORDAR, VOLVERTE KETO
Usamos exactamente los mismos pasos de la respiración aeróbica para quemar grasas. En vez de comenzar con una molécula de glucosa empezamos con una molécula de triglicéridos. Puede provenir sin escalas de la pizza que acabamos de comernos, haber sido almacenada dentro de un quilomicrón o estar recién liberada de nuestras abundantes reservas de grasa. Sin importar su fuente, los triglicéridos se descomponen en ácidos grasos y glicerol y se convierten en acetil CoA (el glicerol se transforma en piruvato; figura 2.1). E igual que la glucosa, los átomos de carbono, oxígeno e hidrógeno que conforman esos ácidos grasos y gliceroles se exhalan como CO2 o se convierten en agua. Dejando de lado la pequeña proporción que se convierte en agua, la grasa que quemas deja tu cuerpo por el aire, excretada por tus pulmones. Exhalas lo que comes.
Si quemas mucha grasa, ya sea porque estás en una dieta extremadamente baja en carbohidratos o muriéndote de hambre, parte del acetil CoA que generas se convertirá en moléculas llamadas cetonas. La mayor parte de la producción de cetonas ocurre en el hígado. Las cetonas son como la versión viajera del acetil CoA, y pueden desplazarse por el torrente sanguíneo hasta otras células, reconvertirse en acetil CoA y usarse para generar ATP. Como muchos otros ejemplos de conversión metabólica, casi toda la producción de cetonas ocurre en el hígado, pero se emplean en todo el cuerpo. Ésta es la ruta que aprovechan las populares dietas cetónicas, que promueven un sistema de ingesta de grasas y proteínas pero prácticamente cero carbohidratos. Cuando se cierra casi por completo el tren de los carbohidratos todo el tráfico pasa a las rutas de las grasas y las proteínas.
Puesto que la cetonas viajan por la sangre, terminan por aparecer en tu orina. Las personas muy curiosas o muy aburridas pueden comprar en la mayor parte de las farmacias tiras para detectarlas; no se necesita receta. La presencia de cetonas en la orina indica que el cuerpo se encuentra en “cetogénesis”, un estado en el que depende en gran medida de las grasas para obtener energía.
Una vez que te familiarices con las rutas de la grasa y la glucosa en la figura 2.1, te resultará evidente por qué dietas cetogénicas extremadamente bajas en calorías, como la dieta Atkins o la dieta paleo, tan de moda ahora (y que como veremos en el capítulo 6 está lejos de ser paleolítica) pueden conducir a una enorme pérdida de grasa. Si no consumes carbohidratos, la única forma de generar acetil CoA es quemando grasas. Por supuesto también puedes quemar proteínas al convertir los aminoácidos en cetonas o glucosa (algunos aminoácidos incluso forman moléculas que pueden introducirse justo en medio del ciclo de Krebs, como un niño que salta a una cuerda en movimiento). Pero las proteínas suelen ser un actor secundario en términos de calorías diarias. La grasa es el principal combustible cuando estamos en dietas bajas en carbohidratos, y si comes menos calorías de las que quemas el déficit se compensará quemando la grasa almacenada para obtener energía. Parte de esta grasa se procesará en forma de cetonas antes de ser quemada. Por ejemplo, el cerebro es particularmente melindroso y en general sólo usa glucosa para mantener su metabolismo, pero si no hay glucosa disponible optará por quemar cetonas.
El lado oscuro de la conversión de grasas en energía es que las vías corren en doble sentido. Como puedes ver en la figura 2.1, una molécula de azúcares (glucosa o fructosa) puede convertirse en acetil CoA y saltar a la vía de los ácidos grasos en vez de entrar al ciclo de Krebs. Y ¡voilà! Conviertes el azúcar en grasa. El mismo proceso se usa para convertir grasa en acetil CoA, sólo que en reversa.
De hecho, como cualquier sistema de tránsito flexible, nuestras rutas metabólicas han evolucionado para responder a las condiciones del tráfico y para enviar moléculas a sus destinos más sensatos.26 ¿Tienes más azúcares de los que necesitas? Manda la glucosa y la fructosa extra para conversión en glicógeno. ¿Los almacenes de glicógeno están llenos? Manda el exceso de azúcares al acetil CoA. Si el tren del ciclo de Krebs está abarrotado porque la demanda de energía es baja, comienza a mandar acetil CoA a la grasa. Y en la grasa siempre hay mucho espacio disponible. Cuando los almacenes de glicógeno se llenan ya no puedes guardar el exceso de proteínas, pero en lo que respecta a la grasa no hay límites para la aglomeración.
Y por eso debemos sospechar de cualquier dieta que apunte a un nutriente específico como el héroe o el villano de la pérdida de peso. Nada es inocente si se come en exceso. Todas las calorías que no se quemen, sin importar si provienen de los almidones, los azúcares, las grasas o las proteínas, terminarán por ser tejido extra en tu cuerpo. Si estás embarazada o tratando de ganar masa en el gimnasio ese tejido puede ser útil para fabricar nuevos órganos o más músculo. Pero si no, esas calorías adicionales, no importa cuál sea su origen dietético, terminarán convertidas en grasa. Esto es lo primero que tenemos que entender para empezar a hablar sobre la complejidad de la dieta y la salud metabólica en el mundo real. Hablaremos mucho más sobre dietas y sobre las evidencias de que disponemos para lo que funciona y lo que no en los capítulos 5 y 6.
VENENOS VEGETALES
¿Es mejor vivir en una ignorancia feliz y romántica? Puedo entender el atractivo: es más fácil levantarse todos los días si sientes que la Madre Naturaleza quiere recibirte con un cálido abrazo, que el mundo natural, e incluso los demás seres humanos, son esencialmente benévolos. El dolor y la muerte pueden ser inevitables, pero sólo porque somos seres torpes, falibles y fuera de sincronía con las armonías que rigen el universo. Si sólo nos entregáramos al flujo kármico, si fuéramos de naturaleza generosa, el mundo sin duda nos correspondería. Si sólo pudiéramos volver a un estado de naturaleza, como nuestros ancestros cazadores-recolectores…
¿Verdad?
Noche de cine en la sabana. Todo el campamento hadza está reunido en la oscuridad en torno a la computadora portátil de Brian, que reproduce un documental sobre la naturaleza. Todos están encantados. Cada vez que un nuevo protagonista animal aparece a cuadro se produce una algarabía entre la multitud. ¡Ooooohhh! ¡Miren el ñu! ¡Ay, mira, es una jirafa enorme! Entonces aparece una escena nocturna a orillas de un abrevadero. Los elefantes llegan a beber, desesperados por algo de agua en el punto más crítico de la temporada de secas. Pero cerca de allí acechan unos leones. La manada ataca a un elefante bebé y le muerde la nuca; el pequeño corre despavorido, alzando su trompita y lanzando balidos de dolor. La multitud está absorta, yo incluido. Los elefantes adultos tratan de ahuyentar a los leones, pero no lo logran. Hay demasiados, y atacan como ninja, uno tras otro, profundizando cada vez las heridas que sangran. El fin llega pronto. ¡Un bebé elefante! Dios mío, el horror. Está claro que la Naturaleza se equivocó. Se supone que no deben ocurrir cosas tan repugnantes como ésta.
Los hadza estallan en gritos de alegría. ¡Ja! ¡Los leones los atraparon!
Me quedo pasmado. ¿Qué clase de psicópata le va a los leones?27
Pero luego lo entiendo. Sentir pena por los elefantes es un lujo de los habitantes de las ciudades que experimentan la naturaleza en la pantalla de televisión. Cuando creces y vives en la naturaleza todos los días entiendes que ella no tiene el menor interés por acogerte. No hay ningún drama majestuoso que ocurre exclusivamente en beneficio de tu crecimiento espiritual. No, por el contrario, eres parte de una desordenada mezcla de especies, algunas malintencionadas, otras indiferentes, pero ninguna de ellas es tu amiga. Los hadza odian a los elefantes porque son enormes e irascibles y de vez en cuando matan a un integrante de su campamento. Les tienen a los elefantes tanto cariño como a las serpientes, y los hadza odian a las serpientes.
Los hadza no lloran por los animales que cazan, igual que tú no lloras por tu yogur para el desayuno. No son cínicos o insensibles, pero saben cómo es la vida. Ser parte del ecosistema implica comerse unos a otros, ya seas una planta o un animal. Los perros salvajes que olfatean tu rastro en la brisa y te siguen no sienten el menor remordimiento cuando llega el momento de desgarrarte las entrañas. Son negocios; nada personal. Entender la vida en un sistema real, funcional, exige que abandonemos las mitologías románticas con las que nos alimenta Disney mientras crecemos al amparo de nuestras ciudades y suburbios.
Ver el mundo a través de las lentes de la evolución es una llamada de atención igual de perturbadora. Lo que Darwin vio claramente por primera vez fue que todas las especies compiten por recursos limitados: luchan por conseguir comida sin convertirse ellos mismos en la cena. En la naturaleza no hay “malos” ni “buenos”; somos nosotros los que asignamos juicios culturales a un reparto de personajes en realidad amorales e indiferentes. Incluso las cosas que parecen hacerse en nuestro beneficio ocurren por motivos evolutivos ulteriores que son esencialmente egoístas. Las frutas, esos regalos de los árboles, repletas de dulce carne, no son más que un astuto medio para dispersar semillas. Los perros han evolucionado para aprovecharse de nuestras emociones28 y obligarnos a quererlos porque los humanos somos una excelente fuente de comida para el perro. ¿Y las plantas exuberantes que llenan nuestro planeta de vida? Llevan 500 millones de años envenenándonos silenciosamente.
La vida requiere energía, y el primer sistema de producción de combustible que evolucionó en nuestro planeta fue la fotosíntesis. Las primeras bacterias que aprovecharon la luz del sol dependían del hidrógeno y el azufre, no del agua, para llevar a cabo la fotosíntesis. Luego, hace unos 2,300 millones de años, en algún estanque somero de una joven Tierra rocosa, evolucionó una nueva receta para la fotosíntesis29 que convertía el agua (H2O) y el dióxido de carbono (CO2) en glucosa (C6H12O6) y oxígeno (O2). La luz del sol proveía la energía necesaria para esta conversión, energía que se almacenaba en los enlaces moleculares de la glucosa.
Este nuevo tipo de fotosíntesis, llamada oxigénica porque produce oxígeno como producto de desecho, fue una revolución. La vida que empleaba fotosíntesis oxigénica, absorbiendo CO2 y agua y escupiendo oxígeno, colonizó el planeta. Tendemos a pensar en el oxígeno como en un bien, algo que hace posible la vida, pero su verdadera naturaleza química es devastadora. Se roba electrones y se enlaza a otras moléculas, que altera por completo y con frecuencia hace pedazos. El oxígeno es Shiva el destructor, que extermina todo lo que toca, ya sea lentamente (la oxidación) o de forma violenta (el fuego).
Al principio el nuevo oxígeno que producían las plantas fue absorbido por el hierro en el polvo y las rocas, creando gigantescas “bandas rojas” en la corteza terrestre. Luego fue el océano el que absorbió tanto oxígeno como pudo. Y después la atmósfera comenzó a llenarse, pasando de cero a más de 20 por ciento a medida que las plantas fotosintéticas de todo el mundo eructaban esta desagradable sustancia de forma constante e indiferente. Los crecientes niveles de oxígeno aniquilaron a casi todos los seres vivos, un evento conocido como la Gran Catástrofe del Oxígeno. La vida en la Tierra se encontraba al borde de la extinción total.
ALIENS EN NUESTRO INTERIOR:
LAS MITOCONDRIAS Y LA DICHA DEL O2
En las escalas inaprehensibles del tiempo evolutivo, incluso los acontecimientos improbables se vuelven rutina. Pensemos en las probabilidades de ser alcanzado por un rayo, que para los estadunidenses son de 1 en 700,000 al año.30 Si vives 70 años tus probabilidades siguen siendo reconfortantemente bajas, de 1 en 10,000. Pero ¿qué pasaría si vivieras 3,000 millones de años y pudieras ver toda la historia de la vida en la Tierra? En esa escala de tiempo sería de esperar que te cayera un rayo unas 4,200 veces.
Las cifras son aún más difíciles de entender cuando pensamos en la evolución de hordas y hordas de bacterias microscópicas y otros microorganismos unicelulares. En unos gramos de agua “limpia” puede vivir más de un millón de bacterias,31 y nuestro planeta contiene unos 1,380 millones de kilómetros cúbicos de agua.32 Eso nos da una cifra total de bacterias acuáticas en este planeta (ignorando las terrestres) de más o menos 40 × 1027, es decir, un 40 seguido por 27 ceros. Incluso si solamente se replicaran una vez al día ocurrirían 14 × 1030 replicaciones al año. ¿Qué probabilidades existen de que emerja una mutación al azar que transforme una ruta metabólica de modo que convierta una sustancia química previamente inservible en una fuente de alimento? Incluso si las probabilidades fueran de 1 en 100 billones podríamos esperar que cada año ocurrieran más de 100,000 billones de mutaciones como ésta. A lo largo de los millones de años de los que dispone la evolución este tipo de mutaciones son casi inevitables.
Durante los eones en los que la joven Tierra fue llenándose lentamente de oxígeno venenoso se presentó una oportunidad. Entre la infinidad de miles de billones de bacterias que vivían, mutaban y se reproducían en escalas de tiempo de miles de millones de años, algunas se toparon por causalidad con una solución improbable, una forma de aprovechar el oxígeno para producir combustible: la fosforilación oxidativa. Transportar electrones dentro y fuera del espacio intermembrana les permitió a estas bacterias invertir el proceso de fotosíntesis: usar el oxígeno para romper los enlaces de glucosa y liberar la energía solar almacenada en su interior. Los productos de desecho eran CO2 y agua… los ingredientes de la fotosíntesis.
Fue un hito en la evolución. El metabolismo aeróbico abrió una frontera nueva e inexplorada, una estrategia nueva para la vida. Las bacterias que usaban oxígeno se dispersaron por el planeta y se diversificaron en nuevas especies y familias. Pronto estuvieron en todos lados.
Luego ocurrió otro acontecimiento improbable. En el inhóspito mundo de la vida temprana, donde las células se devoraban unas a otras, las prósperas bacterias aeróbicas eran una deliciosa entrada nueva en el menú. Cuando una célula devora a otra (ya sea una amiba en un charco del patio que se come a un paramecio o una célula inmunitaria en tu sangre que mata a una bacteria invasora), lo que hace es tragarse a su presa: introduce a la víctima dentro de su membrana para desmembrarla y quemarla como combustible. Tras ser devoradas así incontables millones de bacterias aeróbicas a lo largo de cientos de millones de años, un puñado (tal vez sólo una o dos) lograron escapar de la destrucción. Contra todo pronóstico sobrevivieron, intactas, en el interior de su huésped. Eran diminutos Jonás en el vientre de la ballena.
Y funcionó extraordinariamente bien.
Estas células quiméricas tenían ventajas sobre otras en los océanos de la Tierra media. Con una bacteria especializada en la producción de energía a bordo, estas células híbridas les ganaron a otras en la competencia por convertir energía en descendientes. El motor bacteriano interno se volvió la norma. Todos los animales que viven hoy en la Tierra, desde los gusanos hasta los pulpos y los elefantes, son herederos de este gran salto hacia delante. Como todos los demás animales, llevamos en el interior de nuestras células a los descendientes de estas bacterias aeróbicas salvadoras: nuestras mitocondrias.
La revolucionaria idea de que las mitocondrias evolucionaron a partir de bacterias simbióticas fue propuesta por la visionaria bióloga evolutiva Lynn Margulis.33 Desde el siglo XIX los investigadores habían reconocido la semejanza visual entre las mitocondrias y las bacterias al verlas a través del microscopio, y habían especulado con la posibilidad de un origen bacteriano de las mitocondrias, pero fue Margulis la que le inyectó vida y rigor a la idea. A finales de la década de 1960 escribió un revolucionario artículo sobre la teoría. Lo rechazaron decenas de revistas que opinaban que era demasiado escandaloso, pero ella perseveró. Durante las décadas siguientes resultó claro que la escandalosa idea de Margulis era correcta.
Las mitocondrias dentro de nuestras células conservan su propio anillito de ADN, un revelador vestigio de su pasado bacteriano. Y nosotros las alimentamos y las cuidamos diligentemente como si fueran mascotas amadas; nuestros corazones y pulmones están dedicados a la tarea de proporcionarles oxígeno a nuestras mitocondrias y limpiar sus desperdicios de CO2. Sin ellas y sin la magia de la fosforilación oxidativa no podríamos mantener las extravagancias energéticas que damos por hecho. La vida jamás habría evolucionado en la increíble colección de especies de la que hoy somos testigos.
El oxígeno es el ingrediente principal de la fosforilación oxidativa precisamente porque es un ladrón de electrones, la misma característica que lo vuelve tan destructivo. El oxígeno es el receptor final de electrones en lo que se conoce como la cadena de transporte de electrones, la brigada de baldes que lleva los electrones en la membrana interior de las mitocondrias e introduce los iones de hidrógeno en el espacio intermembrana. Sin oxígeno, la cadena de transporte de electrones se detiene, el ciclo de Krebs se retrae y las mitocondrias se apagan. Cuando los electrones saltan al oxígeno al final de la cadena de transporte de electrones, atraen iones de hidrógeno y forman agua, H2O. Tus mitocondrias producen más de una taza de agua al día (unos 300 mililitros) a partir del oxígeno que respiras.
EN SUS MARCAS, LISTOS, FUERA
Al nivel básico de los macronutrientes y las mitocondrias, las rutas metabólicas y la producción de ATP, todos los animales (incluidos los humanos) somos esencialmente lo mismo. La figura 2.1 se aplica igual de bien a las cucarachas, las cabras y los californianos. Y sin embargo, en los casi 2,000 millones de años que han transcurrido desde que entraran en escena el metabolismo aeróbico y las mitocondrias, ha evolucionado una asombrosa diversidad de seres vivos, los cuales usan el mismo esquema metabólico. Los metabolismos se han acelerado y ralentizado, retocado y remodelado para dar lugar a la infinidad de formas en las que los animales se mueven, crecen, se reproducen y se reparan a sí mismos. Como vimos en el capítulo anterior, estos cambios metabólicos han modelado a nuestra especie de forma esencial.
Ahora que entendemos los rasgos metabólicos básicos que comparten todos los animales, exploremos qué formas les ha dado la evolución. Visitemos todos los lugares a los que pueden llevarnos estas máquinas devoradoras de oxígeno y descubramos cómo funcionan cotidianamente en el mundo real. ¿Cuánta energía quemamos realmente día a día, y en qué? ¿Cuánta energía se necesita para caminar un kilómetro, luchar contra un resfriado o gestar un bebé? ¿De verdad podemos “acelerar” nuestro metabolismo con café, dietas o súper alimentos? ¿Cómo obtiene nuestro cuerpo la cantidad justa de combustible para satisfacer nuestras necesidades diarias? ¿Y por qué se desgastan y se descomponen nuestras maquinarias metabólicas? ¿La muerte es el costo inevitable que debemos pagar por quemar energía, el pacto con el diablo que nos da la oportunidad de caminar entre los vivos?
Y lo más importante, ¿hasta dónde tengo que correr para escapar de la culpa de comerme una buena dona?