Читать книгу Избранные лекции по физиологии человека (нервная и сенсорные системы) - И. Г. Таламова - Страница 3
УЧЕБНЫЙ ЭЛЕМЕНТ I.
Введение в физиологию. Центральная нервная система
Лекция 1. ХАРАКТЕРИСТИКА ФИЗИОЛОГИИ. НЕЙРОН КАК СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА НЕРВНОЙ СИСТЕМЫ
1.3. Электрические явления в возбудимых тканях
ОглавлениеБиопотенциалы – общее название всех видов электрических процессов в живых системах. Для исследования электрических явлений в нервных (и других) клетках широко применяют микроэлектроды (стеклянные пипетки с очень тонким, примерно 0,5 мкм, кончиком), заполненные электролитом. В таком микроэлектроде электролит играет роль проводника тока, а стекло – изолятора. Если кончик микроэлектрода вводят внутрь клетки, то он регистрирует внутриклеточный потенциал (относительно наружного «индифферентного» электрода).
Все электрические процессы разворачиваются на цитоплазматической мембране, являющейся хорошим электрическим изолятором. Некоторые белки, входящие в состав мембраны, целиком пронизывают ее. Именно пронизывающие мембрану (трансмембранные) белки образуют структуры, обеспечивающие движение ионов через мембрану (ионные переносчики и ионные каналы).
По обе стороны мембраны, между содержимым клетки и внеклеточной жидкостью, обычно существует электрическая разность потенциалов – мембранный потенциал (МП). Мембранный потенциал, или потенциал покоя, оказывает влияние на процессы трансмембранного обмена веществ. В среднем у клеток возбудимых тканей МП достигает 50–80 мВ (МП у новорожденных равен 50 мВ, у взрослых – 60–80 мВ), со знаком «-» внутри клетки. Обусловлен он преимущественно ионами калия. Ионов калия намного больше в клетке, чем в среде, поэтому по градиенту концентраций калий может выходить из клетки, и это происходит с участием калиевых каналов, часть которых открыта в условиях покоя. В результате из-за того, что мембрана непроницаема для анионов клетки (глутамат, аспартат, органические фосфаты), на внутренней поверхности клетки образуется избыток отрицательно заряженных частиц, а на наружной – избыток положительно заряженных частиц. Возникает разность потенциалов. Величина МП также определяется ионами хлора и натрия, которые в небольших количествах могут проходить через полупроницаемую мембрану внутрь клетки.
Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионной асимметрии. Для этого, в частности, служит калий-натриевый насос (и хлорный), который восстанавливает ионную асимметрию, особенно после акта возбуждения. Калий-натриевый насос работает, используя энергию АТФ. Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия в нем выделяют следующие фазы:
1) локальный ответ – начальный этап деполяризации;
2) фаза деполяризации – быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут);
3) фаза реполяризации – восстановление исходного уровня мембранного потенциала.
При исследовании ПД нервной клетки и ПД скелетной мышцы было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциалов (деполяризация) (рис. 1).
На пике ПД мембранный потенциал быстро уменьшается, и на короткий период происходит перезарядка мембраны – явление реверсии, или овершута (внутренняя поверхность мембраны заряжена положительно по отношению к наружной). Однако бесконечно этот процесс идти не может: в результате закрытия инактивационных ворот натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов открываются и «+» заряды уходят за пределы клетки. Вначале этот процесс идет очень быстро, потом медленно. Поэтому фаза реполяризации вначале протекает быстро, а потом медленно (следовая негативность). На фоне следовых потенциалов происходит активация калий-натриевого насоса, обеспечивающего выведение трех ионов натрия и поступление двух ионов калия в клетку при расщеплении одной молекулы АТФ.
Рис. 1. Сопоставление развития потенциала действия (А) с изменениями проницаемости мембраны (Б) (по К. Кулланде, 1968): I – нарушение деятельности Na+/K+-помпы, изменение проницаемости мембраны, вхождение ионов Na внутрь клетки и изменение заряда мембраны (деполяризация); II – выход ионов K наружу (реполяризация); III – возобновление деятельности Na+/K+-помпы
Развитие ПД происходит по закону «все или ничего». При этом отмечаются фазовые изменения возбудимости клетки:
1. Фаза незначительного повышения возбудимости по сравнению с исходной. По времени эта фаза совпадает с начальной деполяризацией (локальный ответ).
2. Фаза абсолютной рефрактерности характеризуется полной невозбудимостью. По времени эта фаза совпадает с пиком ПД (полная деполяризация и инверсия заряда). Пессимальная частота раздражений на клеточном уровне ведет к ослаблению ответной реакции из-за попадания раздражения в фазу рефрактерности.
3. Фаза относительной рефрактерности характеризуется ответной реакцией на действие сверхпороговых раздражителей. По времени эта фаза совпадает с фазой восстановления потенциала покоя (реверсия и реполяризация).
4. Фаза экзальтации (повышенной возбудимости). Эта фаза по времени совпадает с периодом окончания отрицательного и началом развития положительного следового потенциала действия. Раздражение (даже если оно подпороговое), поступившее в эту фазу, вызывает ответную реакцию с большей легкостью. Оптимальная частота раздражений вызывает максимальную ответную реакцию, так как каждое следующее раздражение попадает в фазу экзальтации.
5. Фаза субнормальной возбудимости характеризуется повторным снижением возбудимости ниже исходного уровня. По времени эта фаза совпадает с развитием гиперполяризации мембраны.