Читать книгу Экология. Повреждение и репарация ДНК: учебное пособие - И. М. Спивак - Страница 3

1. Изучение ДНК-метаболизма

Оглавление

Заинтересовавшись историей изучения трех Р ДНК-метаболизма – репликации (копирование ДНК-предшественницы при каждом клеточном делении), рекомбинации (обмене между различными молекулами ДНК в клетке) и репарации (возвращение измененной ДНК к ее нормальному, «правильному» состоянию), с удивлением обнаруживаешь, что исследования репарации и мутагенеза (появления наследуемых изменений ДНК) резко, почти на 20 лет, отставали от изучения репликации и рекомбинации. Это в первую очередь связано с тем, что серьезные теоретические взгляды на мутационные повреждения ДНК и их репарацию идеологически противоречили изначально сложившейся в науке парадигме о физико-химическом, структурном и, если можно так выразиться, эстетическом совершенстве двойной спирали ДНК. Такое восторженное отношение к главной молекуле наследственности препятствовало развитию системы новых взглядов на динамическое состояние ДНК, которые в большинстве случаев даже не воспринимались всерьез. Фрэнк Сталь однажды заявил, что «возможность того, что гены являются субъектами суматохи, возникающей при одновременном действии оскорбления и неуклюжих усилий эти оскорбления загладить, неправдоподобна».

Только через два десятилетия после того, как он и Джеймс Уотсон представили структуру ДНК, Френсис Крик признался в своем письме в «Nature» от 26 апреля 1974 года: «Мы совершенно ошиблись в возможной роли ДНК-репарации, хотя позднее я пришел к пониманию того, что ДНК столь точна потому, что существует множество различных механизмов репарации». Это ретроспективное размышление одного из создателей модели двойной спирали ДНК дает намек на раннее понимание ДНК как крайне стабильного макромолекулярного образования. Именно это преобладающее в то время мнение задержало изучение таких биохимических процессов как мутагенез и репарация.

Здесь, впрочем, нужно сказать, что через короткий промежуток времени, после того как Уотсон и Крик сообщили о двойной спиральной структуре ДНК, они же приложили правила спаривания оснований к мутагенезу, формулируя его так: «Спонтанная мутация может быть результатом того, что основание случайно окажется в одной из его редких, но вероятных таутомерных форм».

Таутомеризация – это свойство вещества, позволяющее ему находиться в одном из взаимопереходящих химических состояний; в случае ДНК оснований – это кето– и энол-формы. Уотсон и Крик вначале внимательно изучили все возможности и сложности таутомеризации и неудачно попробовали сконструировать свою ДНК-модель из редких энольных форм оснований. Проблема стабильного спаривания оснований была разрешена ими только после того, как Джерри Донахью, бывший аспирант Лайнуса Полинга, указал Уотсону на более разумное использование обычной кето-формы.

При этом Уотсоном и Криком не было дано никакого объяснения тому факту, что химическая лабильность ДНК, проявляющая себя в виде той самой таутомеризации, может иметь широкое приложение к изучению проблемы стабильности генов. Действительно, эта область наблюдения указывает прямой подход к уточнению природы повреждения ДНК и его возможных биологических последствий. В науке создалась парадоксальная ситуация. Для исследования таких реальных проблем, как расшифровка генетического кода или понимание основных признаков репликации и рекомбинации ДНК, активно разрабатывались и создавались многочисленные системы in vitro. При их разработке как инструмент для определения функций генов и их полипептидных продуктов и уточнения генетического кода широко применялся мутагенез, который сам еще долго не являлся предметом независимых серьезных исследований. И все это несмотря на тот факт, что существование репарационного феномена фотореактивации было известно за несколько лет до описания самой структуры ДНК.

Так было до того момента, когда стало понятно, что ДНК все-таки постоянно подвергается повреждениям и что у клетки есть целый арсенал путей, чтобы реагировать на эти повреждения. При этом нарушение или врожденная недостаточность процессов репарации и возникающие в результате этого мутации могут иметь катастрофические последствия, приводя к целому ряду заболеваний человека. Одновременно с этим укреплялось понимание, что мутации тем не менее необходимы, так как являются основой жизни и эволюции.

Последующие работы подтвердили идею о динамическом состоянии ДНК, то есть серьезно изменили существующую парадигму. Это сделало почти в один миг очевидным, что ДНК всех живых организмов постоянно подвергаются мириадам типов повреждений, и что клетки изобрели остроумные механизмы, позволяющие им быть устойчивыми к этим повреждениям и/или репарировать их. Нарушение данных механизмов может привести к серьезным болезненным последствиям, что хорошо проиллюстрировано человеческим наследственным заболеванием пигментной ксеродермой (xeroderma pigmentosum, ХР), наследственным неполипозным раком кишечника (human nonpoliposys colon cancer, HNPCC) и семейными формами рака груди. ХР характеризуется более чем в 10 000 раз повышенным риском рака кожи, связанным с мутагенным воздействием солнечного света, люди с HNPCC демонстрируют повышенную наследственную предрасположенность к раку прямой кишки и другим онкологическим заболеваниям.

Экология. Повреждение и репарация ДНК: учебное пособие

Подняться наверх