Читать книгу All sciences. №8, 2023. International Scientific Journal - Ibratjon Xatamovich Aliyev - Страница 3
PHYSICAL AND MATHEMATICAL SCIENCES
ON A BRIEF ANALYSIS AT A CERTAIN INTERVAL OF THE COLLATZ HYPOTHESIS
Used literature
Оглавление1. Hayes Brian. The ups and downs of hailstone numbers // In the World of Science (Scientific American, Russian edition). – 1984. – No. 3. – pp. 102—107.
2. Stuart Ian. The greatest mathematical problems. – M.: Alpina non-fiction, 2015. – 460 p. – ISBN 978-5-91671-318-3.
3. Jeff Lagarias. The 3x+1 problem and its generalization // American Mathematical Monthly. – 1985. – Vol. 92 – P. 3—23.
4. Alfutova, N. B. Algebra and number theory. Collection of problems for mathematical schools / N. B. Alfutova, A.V. Ustinova. – M.: ICNMO, 2018. – 336 p.
5. Alpatova, N. B. Algebra and number theory: Collection of problems for mathematical schools / N. Alfutova B., And A. V. Ustinov. – M.: mtsnmo, 2009. – 336 c.
6. Arnold, V. I. the Theory of numbers by I. V. Arnold. – M.: Lenand, 2019. – 288 c.
7. Borevich, Z. I. number Theory / zi Borevich, I. R. Shafarevich. – M.: Lenand, 2019. – 504 c.
8. Boss, W. Lectures on mathematics: Theory of numbers / V. Boss. – M.: Lenand, 2014. – 224 p.
9. Boss, V. Lectures on Mathematics vol.14: Theory of numbers / V. Boss. – M.: CD Librocom, 2010. – 216 p.
10. Boss, V. Lectures on mathematics: Theory of numbers / V. Boss. – M.: Lenand, 2017. – 224 p.
11. Boss, V. Lectures on mathematics: Theory of numbers / V. Boss. – M.: Lenand, 2019. – 224 p.
12. Bukhstab, A. A. Number theory: A textbook / A. A. Bukhstab. – St. Petersburg: Lan, 2015. – 384 p.
13. Weil, G. Algebraic theory of numbers / G. Weil. – M.: URSS, 2011. – 224 p.
14. Gankel, G. The theory of complex numerical systems, mainly ordinary imaginary numbers and Hamilton quaternions together with their geometric interpretation. Trans. from German / G. Gankel. – M.: Lenand, 2015. – 264 p.
15. Gankel, G. The theory of complex numerical systems, mainly ordinary imaginary numbers and Hamilton quaternions together with their geometric interpretation / G. Gankel. – M.: Lenand, 2015. – 264 p.
16. Egorov, V. V. Theory of numbers: A textbook / V. V. Egorov. – St. Petersburg: Lan, 2015. – 384 p.
17. Zolotarev, E. I. Theory of integral complex numbers with an application to integral calculus / E. I. Zolotarev. – M.: Lenand, 2016. – 216 p.
18. Ivanets, H. Analytical theory of numbers / H. Ivanets. – M.: ICNMO, 2014. – 712 p.
19. Krasnov, M. L. All higher mathematics: Discrete mathematics (number theory, general algebra, combinatorics, Poya theory, graph theory, pairs, matroids) / M. L. Krasnov, A. I. Kiselev, G. I. Makarenko. – M.: KomKniga, 2014. – 208 p.
20. Ozhigova, E. P. What is the theory of numbers / E. P. Ozhigova. – M.: Editorial URSS, 2010. – 176 p.
21. Ostrik, V. V. Algebraic geometry and number theory. Rational and elliptic curves / V. V. Ostrik. – M.: ICNMO, 2011. – 48 p.
22. Ostrik, V. V. Algebraic geometry and number theory: rational and elliptic curves / V. V. Ostrik, M.A. Tsfasman. – M.: ICNMO, 2005. – 48 p.
23. Petrov, N. N. Mathematical games: Joke games. Symmetry. Games “Him”. The game “Jianshizi”. Games with polynomials. Games and number theory. Analysis from the end. Winning strategies / N. N. Petrov. – M.: Lenand, 2017. – 208 p.
24. Rybnikov, K. A. History of mathematics: Interdisciplinary presentation: Geometry. Algebra and number theory. Mathematical analysis. Probability theory and mathematical statistics. Discrete Mathematics / K. A. Rybnikov. – M.: Lenand, 2018. – 536 p.
25. Serovaisky, S. Ya. History of Mathematics: Evolution of mathematical ideas: Number Theory. Geometry. Topology / S. Ya. Serovaisky. – M.: Lenand, 2019. – 224 p.
26. Sushkevich, A. K. Theory of numbers / A. K. Sushkevich. – M.: University book, 2016. – 240 p.
27. Sushkevich, A. K. Number theory. Elementary course / A. K. Sushkevich. – M.: University book, 2007. – 240 p.