Читать книгу Commercial Geography - Jacques W. Redway - Страница 16

TRANSPORTATION—OCEAN AND INLAND NAVIGATION

Оглавление

Table of Contents

Of all the adjustments which come into the lives of a people none has been so far-reaching as the gradual localization of industries each in the region best adapted to it. For instance, manufacturing industries require power, but not fertile soil; therefore the manufacturing industries seek nearness to fuel or to water-power, and a position available for quick transportation.

Farming does not require any great amount of natural power; on the contrary, level land having a great depth of fertile soil is the essential feature. The farmer must therefore look first of all to conditions of topography and climate, and secondly to the means of transporting his crop.

Mining cannot be an industry in regions destitute of minerals; the miner must therefore go where the mineral wealth is found, without regard to climate, soil, centres of population, or topography. But two things are required—the mineral products and the means of getting them to the people—that is, ready means of transportation.

A century or more ago, each centre of population in the United States was practically self-sustaining. Each grew its own food-stuffs, and manufactured the articles used in the household. But very little was required in the way of transportation. The means of carriage were mainly ox-carts, pack-horses, and rafts. There was a mutual independence among the various centres, it is true, but the independence was at the expense of civilization and the comforts of life.

OCEAN TRANSPORTATION—ROYAL MAIL STEAMSHIP OCEANIC, WHITE STAR LINE

Beyond an independence that is more apparent than real, such a plan of social and industrial organization has but little in it to commend. Intercommunication increases knowledge, and under the conditions that formerly prevailed, there was a lack of the breadth of knowledge that comes with the mutual contact of peoples.

The utilization of national resources, such as the productiveness of the land, the existence of iron ore, coal, copper, and other economic minerals, finally brought about the policy of a territorial division of industries. This, in turn, made the prompt transportation and exchange of commodities essential; indeed, without such a plan, industrial centres could not long exist.

The man whose sole business is manufacture must look to others for his supply of food-stuffs and raw materials, and these are produced more economically at a distance from the centre of manufacture. Thus England must look to the United States for wheat and cotton, to the Australian Commonwealth for wool, and to New Zealand and the United States for meat. Her chief wealth is in her coal and iron, and these make the nation a great manufacturing centre. So, also, the manufacturer of New York must go to Pittsburg for steel, to Minneapolis for flour, and to Chicago for beef.

The application of this principle is very broad; it is the foundation of all commerce, and it underlies modern civilization. For this reason the question of transportation is just as important to a community as the industries of agriculture, mining, and manufacture. Food-stuffs are of no use unless they can be transported to the people who want them; nor can peoples remain in unproductive regions unless the food-stuffs are brought to them.

The gross tonnage of goods is transported mainly in one or another or all of three ways—namely, by animal power, by railway, or by water. Thus, the cotton-crop of the United States is usually transported by wagon from the plantation to the nearest station or boat-landing; by rail or by barge to the nearest seaport; and by ocean steamship to the foreign seaport.

Water transportation is more economical than land carriage, for the reason that less power is required to move a given tonnage through the water than on the most perfectly graded railway. Steamship freights, as a rule, are lower than those of sailing-vessels, because a steamship has more than twice the speed, and, being larger, can carry a greater tonnage. Freight rates on the Great Lakes are higher per ton-mile than on the ocean, because the vessels are necessarily smaller than those built for ocean traffic. For a similar reason, river and canal freights are higher than lake freights. Railway transportation is economical, partly because a single locomotive will draw an enormous weight of goods, and partly because of the high speed at which the goods move from point to point. Animal transportation is more expensive than any other means ordinarily employed.

Ocean Transportation.—In many respects, water-routes form the most available and economical methods of transportation. Intercontinental commerce must be carried on by means of deep-water vessels. Therefore an extraordinary development of ocean carriers has taken place in the past century.

One important period of development began with the rise of American commerce. Just after the close of the War for Independence, it was found that deep-water ships could be built of New England timber for thirty-five dollars per ton, rated tonnage, while a vessel of the same burden built in Europe cost about forty-five dollars per unit of tonnage. Two types of vessels came into use—one, the clipper ship with square sails, was used for long ocean voyages; the other, the schooner, with fore-and-aft rigging, was employed mainly in the coast-trade.

A SQUARE-RIGGED SHIP—A TYPE NOW BEING REPLACED BY FORE-AND-AFT RIGGED SCHOONERS

In speed and ease of management these vessels surpassed anything that had ever sailed. In time they became the standards for the sailing-vessels of all the great commercial nations. The types of the vessels are still standards.

THE DEVELOPMENT OF THE MODERN STEAMSHIP

The Development of the Steamship.—Another important era in ocean commerce began when steam was used as a motive power for vessels. The first deep-water vessel thus to be propelled was the Savannah. Her steam-power was merely incidental, however, and her paddle-wheels were unshipped and taken aboard when there was enough wind for sailing. Up to 1860 almost all the ocean steamships were side-wheelers, propelled by low-pressure beam-engines.

The next most important improvement was the screw-blade propeller, placed astern. This means of propulsion called for higher speed of the engines, and in a very short time compactly built high-pressure engines took the place of the low-pressure engine with its heavy walking-beam. The latter carried steam at a pressure varying from twenty to thirty-two pounds; the modern boiler has steam at 260 pounds per square inch.

Ocean steamships have gradually evolved into two types. The freighter, broad in beam and capacious, is built to carry an enormous amount of freight at a moderate speed. The White Star liner Celtic is a vessel of this class; her schedule time between New York and Liverpool is about nine days. The Philadelphia of the American line, though not the fastest steamship, makes the same trip in an average time of five and one-half days.[7]

Twin-screws, instead of a single propeller, are employed on nearly all the large liners. The gain in speed is not greatly increased, but the vessel is far more manageable with two screws than with one; moreover, if one engine breaks down, the vessel can make excellent time with the other.

Triple-expansion engines are almost universally used on modern steamships, and a pound of coal now makes about three times as much steam available as in the engines formerly used. As a result a bushel of wheat is now carried from Fargo, N. Dak., to Liverpool for about twenty-one cents—less than one-half the freight tariff of 1876.

THE SCHOONER THOMAS A. LAWSON. THE FIRST SEVEN-MASTED SAILING-VESSEL

The fastest liners consume from three hundred and fifty to more than four hundred tons of coal a day, and for each additional knot of speed the amount of coal burned must be greatly increased. Freighters like the Celtic consume scarcely more than half as much as those of the Kaiser Wilhelm II. type.

Sailing-Craft.—In spite of the growth and development of steam-navigation, a large amount of freight is still carried by sailing-craft; moreover, it is not unlikely that the relative proportion of ocean freight carried by sailing-vessels will increase rather than decrease, especially in the case of imperishable freight.

The square-rigged ship, or bark, has been very largely replaced by the fore-and-aft, or schooner-rigged vessel. A large full-rigged ship requires a crew of thirty to thirty-six men; a schooner-rigged vessel needs from sixteen to twenty. These vessels are commonly built with three and four masts; some of the largest have six or seven. They carry as many as five thousand tons of freight at a speed of about ten knots—only a trifle less than that of an ordinary tramp freighter. Some of the larger vessels are provided with auxiliary engines and propelling apparatus, which enables them to enter or to leave port without the assistance of a tug. Donkey-engines hoist and lower the sails, and perform the work of loading and unloading. They are admirable colliers and grain-carriers.

At the beginning of the twentieth century, about ninety thousand sailing-craft and thirty-five thousand steam-vessels were required to carry the world's commerce. Of this number, Great Britain and her colonies register nearly thirty-five thousand, and the United States over twenty thousand.

Harbor Safeguards.—Excepting the open anchorages formed by angles in coast-lines, the greater number of harbors consist of small coves and river-mouths. In these, although there may be a considerable area of water, there is not apt to be much sailing room; it is therefore necessary to mark off the navigable channels. For this purpose buoys of different shapes and colors are used by day; by night fixed and flashing lights are employed.

The buoys of permanent channels are usually hollow metal cylinders or cones about two feet in diameter, anchored so that the end of the cylinder projects about three feet above the water. On entering a channel from the seaward, red buoys are on the starboard, or right hand; white buoys are kept on the port, or left side. Buoys at the end of a channel are usually surmounted each by some device or other fastened at the upper end of a perch. Thus, at the outer entrance of Gedney Channel in New York Harbor, a ball surmounts the perch; at the inner entrance the buoy carries a double square. Sharp angles in a channel are similarly marked. In many instances the buoy carries, as a warning signal, a bell that rings as the buoy is rocked by the waves; in others, a whistle that sounds by the air which the rocking motion compresses within the cylinder; still others carry electric or gas lights.

The color of a buoy is an index of its character. Thus, one with black and red stripes indicates danger; one with black and white vertical stripes is a channel-marker. Temporary channels are frequently marked by pieces of spar floating upright. In some cases it is customary to set untrimmed tree-tops on the port, and trimmed sticks on the starboard.

Light-houses are built at all exposed points of navigated coast-waters, and beacons are set at all necessary points within a harbor for use at night. All lights are kept burning from sunset until sunrise. The color, the duration, and the intervals of flashing indicate the position of the beacon. In revolving lights the beams, concentrated by powerful lenses, sweep the horizon as the lantern about the light revolves. Flashing lights are produced when the light is obscured at given intervals. Fixed lights burn with a steady flame. In some instances a sector of colored glass is set so as to cover a given part of a channel. Range lights, set so that one shows directly above the other, are used as channel-markers.

CITY OF NEW YORK AND VICINITY, WITH HARBOR APPROACHES

The use of lights may be seen as a vessel enters New York Lower Bay. A steamship drawing not more than eighteen feet of water may enter through Swash Channel (follow the course on the chart). In this case the pilot makes for Scotland lightship, and merely keeps New Dorp and Elmtree beacons in range, giving Dry Romer a wide berth to starboard, until Chapel Hill and Conover beacons come into range on his port side. The vessel is then held on a course between Coney Island and Fort Tompkins lights until Robbins Reef light shows ahead.

For the liners that draw more than eighteen feet the task is more difficult, inasmuch as the channel is tortuous. At Sandy Hook lightship a course lying nearly west takes the vessel to the outer entrance of Gedney Channel, marked by two buoy-lights. In passing between the lights the vessel enters the channel, which is also covered by the red sector of Hook beacon. The pilot continues between the buoy-lights until Waacaack and Point Comfort beacons are in range, and steers to this range until South Beacon and Sandy Hook light are in range astern. The helm is then turned, keeping these lights in range astern until Chapel Hill and Conover beacons are in range on the port bow. Turning northward nearly eight points, the pilot holds the bow of the vessel between Fort Tompkins and Coney Island lights, keeping sharply to his range astern, until Robbins Reef light comes into view through the narrows. From this point on, the shore lights are the pilot's chief guide.

So difficult are harbor entrances, that in most cases the underwriters will not insure a vessel unless the latter is taken from the outer harbor to the dock by a licensed pilot, and the latter must spend nearly half a lifetime as an apprentice before he receives a license. The charges for pilotage are usually regulated by the number of feet the vessel draws. The charges differ in various ports, but the devices for marking and lighting the channels are much the same in every part of the world. In the United States all navigable channels are under the control of the general Government.

Inland Waters.—Lakes, rivers, and canals furnish a very important means of transportation. In Europe and Canada an enormous amount of slow freight is transported by their use; in China they are the most important means of internal traffic.

Commercial Geography

Подняться наверх