Читать книгу Introduction to the Physics and Techniques of Remote Sensing - Jakob J. van Zyl - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Figure 1.1 Diagram illustrating the different types of information sought af...Figure 1.2 Landsat MSS visible/near IR image of the Imperial Valley area in ...Figure 1.3 Folded mountains in the Sierra Madre region, Mexico (Landsat MSS)...Figure 1.4 Infrared image of the western hemisphere acquired from a meteorol...Figure 1.5 Multispectral satellite images of the Los Angeles basin acquired ...Figure 1.6 Passive microwave image of Antarctic ice cover acquired with a sp...Figure 1.7 Absorption spectrum of H2O for two pressures (100 and 1000 mbars)...Figure 1.8 Spectral signature of some vegetation types.Figure 1.9 Landsat TM images of Death Valley acquired at 0.48 μm (a), 0.56 μ...Figure 1.10 Images of an area near Cuprite, Nevada, acquired with an airborn...Figure 1.11 Sea surface temperature derived from ship observations (a) and f...Figure 1.12 Backscatter data acquired over the Amazon region (insert). The d...Figure 1.13 Profile of Tharsis region (Mars) acquired with Earth‐based radar...Figure 1.14 Profiles of an unnamed impact basin on Mars using Earth‐based ra...Figure 1.15 Sea surface height over two trenches in the Caribbean acquired w...Figure 1.16 Shaded relief display of the topography of California measured b...Figure 1.17 Subsurface layering in the ice cover and bedrock profile acquire...Figure 1.18 Comparison of temperature profiles acquired with a microwave sou...Figure 1.19 Generalized absorption spectrum of the Earth’s atmosphere at zen...

2 Chapter 2Figure 2.1 Electromagnetic spectrum.Figure 2.2 Polarization ellipse.Figure 2.3 Polarization represented as a point on the Poincaré sphere.Figure 2.4 Linear (upper) and circular (lower) polarization.Figure 2.5 Phase velocity.Figure 2.6 Group velocity.Figure 2.7 Doppler geometry for a moving source, fixed observer.Figure 2.8 Geometry illustrating wave fronts passing by a moving observer.Figure 2.9 Doppler geometry for a moving scatterer with fixed source and obs...Figure 2.10 Concept of radiance.Figure 2.11 Spectral luminous efficiency V(λ).Figure 2.12 Spectral radiant emittance of a blackbody at various temperature...Figure 2.13 Curve illustrating the exponential decrease of population as a f...Figure 2.14 An incident wave of frequency νij is adsorbed due to popula...Figure 2.15 Correspondence of spectral bands and photon energy and range of ...Figure 2.16 Transmission spectra of common silicates.Figure 2.17 Sketch of key elements of a remote sensing system.

3 Chapter 3Figure 3.1 The surface spectral imprint is reflected in the spectrum of the ...Figure 3.2 Sun illumination spectral irradiance at the Earth's surface.Figure 3.3 Transmittivity of the Martian atmosphere. The model uses band par...Figure 3.4 Wave interaction with an interface.Figure 3.5 Reflection coefficient of a half‐space with two indices of refrac...Figure 3.6 For a polished surface there is an increase in the reflected ener...Figure 3.7 In the case of a particulate layer, the volume scattering and res...Figure 3.8 Bidirectional reflection spectra of four different particle size ...Figure 3.9 (a) H2O molecule fundamental vibrational modes. (b) CO2 molecule ...Figure 3.10 Spectra of water‐bearing minerals illustrating the variations in...Figure 3.11 Spectra displaying the hydroxyl group tones: overtone near 1.4 μ...Figure 3.12 Basis for the color characteristics of emerald and ruby.Figure 3.13 Spectra of minerals that contain ferrous ions in different cryst...Figure 3.14 Configurations of energy bands for different types of solid mate...Figure 3.15 Visible and infrared bidirectional reflection spectra of particu...Figure 3.16 Use of Fraunhofer lines to detect luminescent material from thei...Figure 3.17 Spectral signature diagram of a variety of geologic materials....Figure 3.18 High‐resolution laboratory spectra of common minerals typically ...Figure 3.19 Spectral reflectance of a variety of biological materials. (a) R...Figure 3.20 Progressive changes in the spectral response of a sycamore leaf ...Figure 3.21 Variations in spectral reflectance as functions of amounts of gr...Figure 3.22 Reflectance spectra for a healthy beech leaf (1) and beech leave...Figure 3.23 Blue shift in the spectrum of conifers induced by a sulfide zone...Figure 3.24 Bidirectional leaf reflectance spectra of laboratory‐grown shore...Figure 3.25 Vegetation effects of green grass cover on spectral reflectance ...Figure 3.26 (a) Representation of the effect of increasing sample thickness ...Figure 3.27 Sketch of major elements of an imaging sensor. The elements are ...Figure 3.28 Multispectral wave dispersion techniques. (a) Beamsplitter used ...Figure 3.29 Diffraction pattern of a circular aperture with uniform illumina...Figure 3.30 These graphs show cuts through the composite diffraction pattern...Figure 3.31 Diffraction patterns of a square aperture with uniform illuminat...Figure 3.32 Imaging geometry showing the instantaneous field of view of a si...Figure 3.33 Comparison of the D* of various infrared detectors when oper...Figure 3.34 Charge coupled devices (CCD) linear array photograph (a) and ske...Figure 3.35 Fabrication process of modern detector arrays.Figure 3.36 Different types of imaging sensor implementations.Figure 3.37 Conceptual sketch of an imaging spectrometer. A narrow strip AB ...Figure 3.38 One possible design for the optical system of the imaging spectr...Figure 3.39 Landsat‐D mapping geometry.Figure 3.40 Thematic mapper optical system.Figure 3.41 The picture shown here was taken by the Mars Orbiter Camera narr...Figure 3.42 Data from the Mars Exploration Rover Opportunity's panoramic cam...Figure 3.43 Images of Saturn acquired with Cassini camera.Figure 3.44 Cassini imaging system. (a) Top, narrow angle and (b) bottom, wi...Figure 3.45 Image of Jupiter acquired with the Juno camera.Figure 3.46 Image of Jupiter acquired with the Juno camera.Figure 3.47 Chandrayaan imaging spectrometer.Figure 3.48 Sketch illustrating the principle of a scanning laser altimeter....Figure 3.49 Interaction of γ‐rays with matter.Figure 3.50 Individual spectral channel images for the nine visible and near...Figure 3.51 Two color combination displays for the Cuprite scene shown in Fi...Figure 3.52 The same images shown in Figure 3.51 after performing a color st...Figure 3.53 Principal component images for the 9 visible and near‐infrared c...Figure 3.54 The principal components PC2, PC3, and PC4 are displayed as blue...Figure 3.55 Spectra of some minerals commonly associated with hydrothermal a...Figure 3.56 Spectral ratio image of the Cuprite scene. The ratios are 4/7 (r...Figure 3.57 Results of an unsupervised classification of the Cuprite scene. ...Figure 3.58 Results of a supervised classification of the Cuprite scene. The...Figure 3.59 This image shows the relative abundances of different materials ...Figure 3.60 (a) Io's spectral reflectance showing the step drop near 0.45 μ...Figure 3.61 This graph shows a spectrum, taken by the Mars Exploration Rover...Figure 3.62 Geometry for Exercise 3.1.Figure 3.63 Energy levels of three different materials.Figure 3.64 Energy levels and allowable transitions for a hypothetical mater...

4 Chapter 4Figure 4.1 Spectral emissivity ∈ and spectral radiant emittance S(λ, T)...Figure 4.2 Reflected (continuous line) and emitted (dashed line) energy spec...Figure 4.3 Geometry for derivation of heat equation.Figure 4.4 Behavior of the temperature wave as a function of depth.Figure 4.5 Diurnal temperature curves for varying (a) thermal inertia in cal...Figure 4.6 Plots of diurnal surface temperature versus local time for two di...Figure 4.7 Night (a) and day (b) thermal images of Death Valley. Thermal ine...Figure 4.8 Visible (left) and thermal infrared (right) images showing the ef...Figure 4.9 (a) Dispersion of quartz. (b) Transmission through a 12.8 μm thic...Figure 4.10 Infrared transmission spectra for some common silicates. Regions...Figure 4.11 Transmission spectra of minerals of different composition and st...Figure 4.12 Diagram illustrating the location of features and the type of vi...Figure 4.13 HCMR optical block diagram.Figure 4.14 Thermal infrared image over northern Death Valley acquired by TI...Figure 4.15 Visible (upper left) and thermal infrared images of Cuprite, Nev...Figure 4.16 Visible (upper left) and principal component images of the therm...Figure 4.17 Sharpened color thermal infrared principal component image of th...Figure 4.18 Day and night thermal infrared images of crater ejecta in the Te...Figure 4.19 False‐color THEMIS infrared image of the Ophir and Candor Chasma...Figure 4.20 Mean sea surface temperature for the period 1987–1999. The top p...Figure 4.21 Weekly averages of the sea surface temperature for a portion of ...

5 Chapter 5Figure 5.1 The total energy radiated from the surface consists of the energy...Figure 5.2 (a) Observed radiometric temperature of a half‐space with dielect...Figure 5.3 Geometry of wave scattering from a rough surface.Figure 5.4 Microwave images of the north polar region. The main image corres...Figure 5.5 Microwave images of the south polar region. The main image corres...Figure 5.6 Soil moisture distribution measured with the ESTAR radiometer as ...Figure 5.7 (a) Relative dielectric constants of sandy and high‐clay soils as...Figure 5.8 An antenna with the pattern shown in (a) will measure a temperatu...Figure 5.9 Geometric configurations for a conically scanned imaging radiomet...Figure 5.10 Ideal single‐baseline interferometer showing the signal arriving...Figure 5.11 Real part of a theoretical visibility function for a single‐base...Figure 5.12 The ESTAR antenna spacings.Figure 5.13 Theoretical antenna patterns synthesized in different pointing d...Figure 5.14 Theoretical pattern synthesized by a Y‐shaped antenna configurat...Figure 5.15 Example of a radiometer block diagram.Figure 5.16 SMMR instrument in its handling fixture.Figure 5.17 SMMR instrument functional block diagram.Figure 5.18 Monthly mean sea ice concentration for the northern hemisphere f...Figure 5.19 Monthly mean sea ice concentration for the southern hemisphere f...Figure Figure 5.A Geometry for Problem 5.9.

6 Chapter 6Figure 6.1 (a) An incident wave on a dielectric half‐space will excite the d...Figure 6.2 The predicted radar cross sections for a slightly rough surface a...Figure 6.3 This series of L‐band images of San Francisco were synthesized fr...Figure 6.4 Sketch showing total absorption (continuous line) and the mean de...Figure 6.5 Penetration depth as a function of frequency for a variety of mat...Figure 6.6 Examples of backscatter cross section as a function of frequency ...Figure 6.7 Dual frequency image of the Black Forest in Germany acquired by t...Figure 6.8 (a) Illustration showing how different surfaces can be separated ...Figure 6.9 Measured backscatter cross section from vegetation.Figure 6.10 Histogram of backscatter data over North America at 13.9 GHz and...Figure 6.11 Behavior of the backscatter cross section as a function of angle...Figure 6.12 Geometry for a linear array.Figure 6.13 Radiation pattern of a linear array.Figure 6.14 Antenna array focused at point P by adding an appropriate phase ...Figure 6.15 Imaging radars typically use antennas that have elongated gain p...Figure 6.16 Temporal and spectral characteristics of continuous wave (CW) an...Figure 6.17 The range resolution of a radar is determined by the pulse lengt...Figure 6.18 Chirp signal (a) and compressed (dechirped) signal (b).Figure 6.19 The compression of a frequency‐modulated signal. The differently...Figure 6.20 Binary phase modulation. When the binary code is indicated by (+...Figure 6.21 Received signals are passed through a tapped delay line with pha...Figure 6.22 (a) The range measurement technique using pulsed radar. Separati...Figure 6.23 Spectrum of pulsed train with increasing Doppler shifts. It is a...Figure 6.24 Generation of a high‐frequency signal by (a) mixing and (b) squa...Figure 6.25 Geometry of a real aperture imaging radar.Figure 6.26 Composite return from an area with multiple scatterers.Figure 6.27 Geometry illustrating the return from two point scatterers A and...Figure 6.28 (a) Exponential, Rayleigh, and Gaussian distributions. (b) Densi...Figure 6.29 The effects of speckle can be reduced by incoherently averaging ...Figure 6.30 Imaging geometry for cameras and radar sensors.Figure 6.31 (a) Distortion geometry in radar images from surface topography....Figure 6.32 Geometry showing the formation of a synthetic array by moving a ...Figure 6.33 Geometry illustrating the range change to a point P during the f...Figure 6.34 Echoes summing in the case of focused (a) and unfocused (b) SAR....Figure 6.35 Doppler history of a point target as the sensor passes by.Figure 6.36 (a) The geometry assumed in traditional SAR processing. The scat...Figure 6.37 Geometry illustrating the range configuration.Figure 6.38 Azimuth ambiguities result when the radar PRF is too low to samp...Figure 6.39 Sidelobes from bright targets (indicated by the arrows in the im...Figure 6.40 (a) Illustration of the sweep SAR concept. (b) Illustration of t...Figure 6.41 Geometry showing the distance to a point target.Figure 6.42 Point target response.Figure 6.43 This figure illustrates how the rectangular SAR processing algor...Figure 6.44 A polarimetric radar is implemented by alternatively transmittin...Figure 6.45 Polarization responses of trihedral corner reflector. These devi...Figure 6.46 Basic interferometric radar geometry. The path length difference...Figure 6.47 This figure shows how the topography of a scene is expressed in ...Figure 6.48 The rate at which the interferometric phase changes from pixel t...Figure 6.49 A sinusoidal surface with spatial wavelength Λ is tilted toward ...Figure 6.50 Interferometric SAR processing geometry. The scatterer must be a...Figure 6.51 (a) Along‐track interferometry imaging geometry. (b) Interferogr...Figure 6.52 Three‐pass differential interferometry imaging geometry. The sur...Figure 6.53 An illustration of differential interferometry. A deformation si...Figure 6.54 UAVSAR image of the Holitna river located in southwest Alaska, p...Figure 6.55 Block diagram of the SIR‐A radar.Figure 6.56 The photograph on the top left shows the SRTM mast and canister ...Figure 6.57 (a) Shaded relief map of California derived from SRTM C‐band rad...Figure 6.58 Examples of sentinel C‐band SAR data. (a) Farmland in Brazil usi...Figure 6.59 (a) SkyMed X band SAR image of the deeply eroded Richat dome. It...Figure 6.60 Illustrative example of DEM data (where color represents height)...Figure 6.61 Examples of Venus images acquired with the Magellon Radar. (a) M...Figure 6.62 Examples of Cassini Radar images of Titan: (a) sand dunes in the...Figure 6.63 Brightness temperature from Saturn. The upper image is the colle...Figure 6.64 A comparison of images of the Safsaf Oasis area in south central...Figure 6.65 Seasonal images of the Price Albert area in Canada. Both images ...Figure 6.66 Seasonal images of the Amazon rain forest near Manaus, Brazil. B...Figure 6.67 The polarization responses for three different areas in the San ...Figure 6.68 The image on the left shows the HH‐VV phase difference for the S...Figure 6.69 Three frequency images of a portion of the Black Forest in Germa...Figure 6.70 Deformation signals measured at C‐band following the M 6.1 Eurek...Figure 6.71 (a) Observed and predicted deformation signals on Darwin volcano...Figure 6.72 (a) Two interferograms over the Ryder Glacier in Greenland acqui...Figure 6.73 (a) Seasat image of ocean internal waves in the Gulf of Californ...Figure 6.74 Seasat image of polar ice floes near Banks Island (lower right c...Figure 6.75 Radar backscatter (left) and along‐track interferometric phase (...Figure 6.76 σ versus wind speed for constant incidence angles and wind ...Figure 6.77 Different scatterometer configurations. (a) Side‐looking fan bea...Figure 6.78 SASS iso‐Doppler lines projected on the surface. The tilt of the...Figure 6.79 SASS measurement geometry.Figure 6.80 SASS block diagram.Figure 6.81 SeaWinds instrument imaging geometry. The left image shows rotat...Figure 6.82 Image swaths acquired by the SeaWinds instrument over a 24 hour ...Figure 6.83 Backscatter data near typhoon Carmen for near vertical incidence...Figure 6.84 (a) Wind patterns over the Pacific for July 1978 derived from the...Figure 6.85 Resolution‐enhanced image of Antarctica using data acquired on O...Figure 6.86 Altimeter measurement geometry.Figure 6.87 Types of altimeter: (a) beam limited and (b) pulse limited.Figure 6.88 Seasat altimeter major functional elements.Figure 6.89 Sea level relative to Mean (1993–2019) for the Pacific Ocean on ...Figure 6.90 Global sea level change over 26 years (1993–2019) derived from m...Figure 6.91 Sea surface height over two trenches measured with the Seasat al...Figure 6.92 Sea surface height over a sea mount as measured with the Seasat ...Figure 6.93 Significant wave height and backscatter measurement over hurrica...Figure 6.94 Imaging altimeters (a) using a scanning antenna beam or (b) spin...Figure 6.95 Map of the surface of Venus generated from the PVO radar data. S...Figure 6.96 The WSOA instrument concept integrated with the Jason altimeter ...Figure 6.97 A comparison of the coverage between the TOPEX/POSEIDON conventi...Figure 6.98 Radar (bottom) and LandSat (top) images of an area in southweste...Figure 6.99 Example of electromagnetic sounding of the Antarctic ice sheet f...Figure 6.100 Example of radar sounding of the Martian polar cap.Figure 6.101 Example of radar sounding of the Titan lakes.

7 Chapter 7Figure 7.1 Sketch illustrating the geoid, the reference ellipsoid, the geoid...Figure 7.2 Phase velocity of ocean surface waves as a function of their wave...Figure 7.3 A wave with phase speed Vp and direction ψ will be in resona...Figure 7.4 Global ocean surface average topography derived from the Seasat a...Figure 7.5 Successive Seasat altimetric profiles (left) along the tracks sho...Figure 7.6 Comparison showing the advances in the estimates of the mean sea ...Figure 7.7 Comparison of gravity anomaly models before the GRACE mission (le...Figure 7.8 (a) Ocean height change derived from Topex and Jason series missi...Figure 7.9 (a) Geometry showing the pulse footprint spread on the surface. (...Figure 7.10 Examples of echo shapes from the ocean surface with different wa...Figure 7.11 Global measurement of surface wave height derived from the echo ...Figure 7.12 Wind speed measurement derived from satellite altimeter compared...Figure 7.13 Global wind speed measurement derived from the TOPEX/POSEIDON al...Figure 7.14 This figure shows sea surface height anomalies measured by the T...Figure 7.15 Global ionospheric total electron content measurement derived fr...Figure 7.16 Global atmospheric water vapor distribution derived from the TOP...Figure 7.17 Variation of σ as a function of wind speed for different va...Figure 7.18 Variation of σ with azimuth at constant wind speed.Figure 7.19 Average global winds derived from the Seasat scatterometer for S...Figure 7.20 SeaWinds measurements of the winds associated with Hurricane Fra...Figure 7.21 SeaWinds measurements of the global wind stress for September 2,...Figure 7.22 Nadir backscatter return measured with the Seasat scatterometer ...Figure 7.23 Changes of σ from one side of a swell to the other as a fun...Figure 7.24 The phase history of a point target is determined by the instant...Figure 7.25 Surface waves refracting and defracting around Shetland Island (...Figure 7.26 Internal waves in the Gulf of Baja near the island of Angel de l...Figure 7.27 Nantucket Shoals are shallow‐water areas to the south and east o...Figure 7.28 Shown on the left image is a small‐scale, well‐organized tropica...Figure 7.29 The Kuskokwim River in Alaska flows into the southeastern Bering...Figure 7.30 Combined QuikSCAT scatterometer and RADARSAT SAR wind speed prod...Figure 7.31 Pack ice within the central Beaufort Sea consists primarily of a...Figure 7.32 The bright feature in Figure 7.31 was imaged by the Seasat SAR o...Figure 7.33 Passive microwave imagery of floating ice acquired by a spacebor...Figure 7.34 Chlorophyll concentration (left) and sea surface temperature (ri...Figure 7.35 Two measurements of chlorophyll concentration near the Galapagos...Figure 7.36 Ocean salinity map derived from Aquarius measurements.

8 Chapter 8Figure 8.1 Temperature profile of the Earth's atmosphere.Figure 8.2 Absorption along a vertical atmosphere path by a variety of const...Figure 8.3 Distribution of some chemically active constituents in the Earth'...Figure 8.4 Three different molecules representing three different types of r...Figure 8.5 Rotational modes of the water and oxygen molecules.Figure 8.6 Absorption spectrum of water vapor at two pressures: 1 bar and 0....Figure 8.7 Absorption spectrum of atmospheric oxygen from 1 to 300 GHz for t...Figure 8.8 Spectral lines of a variety of atmospheric molecules in the Earth...Figure 8.9 (a) Relative line shapes corresponding to Doppler broadening and ...Figure 8.10 Total microwave absorption in the atmospheres of (a) Venus and (...Figure 8.11 The different elements that contribute to the radiation transfer...Figure 8.12 Geometry for the case of a plane parallel atmosphere.Figure 8.13 Different configurations for atmospheric sounding (see text for ...

9 Chapter 9Figure 9.1 Total Earth atmosphere opacity across the microwave spectrum for ...Figure 9.2 Geometry for calculating the observed microwave brightness temper...Figure 9.3 Behavior of the weighting function W(ν, z) corresponding to ...Figure 9.4 Behavior of W(ν, z) corresponding to a linearly decaying atm...Figure 9.5 Temperature weighting functions as a function of altitude above t...Figure 9.6 Normalized weighting function curves for water‐vapor density in t...Figure 9.7 Behavior of a pressure‐broadened spectral line as the pressure ch...Figure 9.8 Behavior of k as a function of νL for fixed value of ν ...Figure 9.9 Behavior of the weighting function for an upward‐looking sensor....Figure 9.10 Unnormalized weighting functions for temperature as a function o...Figure 9.11 Geometry for a limb sounder.Figure 9.12 (a) Temperature weighting functions for an infinitesimal pencil ...Figure 9.13 Examples of ClO and O3 measurements made with the MLS instrument...Figure 9.14 Main functional elements of a passive microwave spectrometer.Figure 9.15 Signal spectra at different stages in the spectrometer shown in ...Figure 9.16 The geometry of radio occultation by a planetary atmosphere.Figure 9.17 Refractivity profile and pressure–temperature profiles of the Ve...Figure 9.18 Geometry for a dual‐frequency occultation measurement using a GP...Figure 9.19 One day (October 1, 2019) radio occultations coverage from COSMI...Figure 9.20 Three rain radar configurations. (a) Range height indicator, (b)...Figure 9.21 Airborne radar data of rain region above the ocean surface off t...Figure 9.22 Examples of rainfall measurements from the TRMM satellite over T...Figure 9.23 Picture of the Rain Cube satellite.Figure 9.24 Rain profile acquired with the Rain Cube radar.Figure 9.25 (a) Clouds’ water content profile acquired over (a) Typhoon Yutu...

10 Chapter 10Figure 10.1 (a) Energy level diagram of H2O. (b) Details of the lower part o...Figure 10.2 Spectral lines within a ±200 MHz band around 265.75 GHz, corresp...Figure 10.3 Spectral line widths in the terrestrial atmosphere. Typical valu...Figure 10.4 Behavior of k(ν, z) as a function of z for different values...Figure 10.5 Behavior of the weighting function W as a function of altitude f...Figure 10.6 (a) Ratio Ch) of the contribution from a layer of thickness ΔhFigure 10.7 Basic elements of a millimeter heterodyne spectrometer.Figure 10.8 Block diagram of a cooled 205 GHz spectrometer.Figure 10.9 Filter bank arrangement for the spectrometer in Figure 10.8.Figure 10.10 Heterodyning arrangement for the spectrometer shown in Figure 1...Figure 10.11 Schematic diagram showing the relative positions of the energy ...Figure 10.12 Block diagram of the EOS MLS instrument.Figure 10.13 A spectrometer designed to study the spectral lines of HNO3, N2

11 Chapter 11Figure 11.1 Interaction of sunlight with the surface and the atmosphere. Es ...Figure 11.2 Ratio of the direct solar irradiance Es to the total irradiance Figure 11.3 Reflectance of a Rayleigh atmosphere illuminated from below with...Figure 11.4 Radiant emittance M, Mg, and Ma at the top of a Rayleigh atmosph...Figure 11.5 Component of outwelling from the atmosphere in the limb scanning...Figure 11.6 Component of the thermal irradiance in the atmosphere.Figure 11.7 Fine structure of molecular absorption bands is illustrated in t...Figure 11.8 Average measured phase functions of different states of the atmo...Figure 11.9 Behavior of the weighting function W(ν, y) as a function of...Figure 11.10 Curves of the product (∂B/∂T) W as a function of pr...Figure 11.11 Geometry for limb sounding.Figure 11.12 A set of weighting functions for a limb sounder with a narrow f...Figure 11.13 Simplified sketch of a pressure modulator radiometer.Figure 11.14 Transmission modulation ΔT(ν) peaks at different wavelengt...Figure 11.15 Simplified diagram illustrating the concepts of a Fourier spect...Figure 11.16 (a) Example of ATMOS data. The top trace shows a 500 cm−1Figure 11.17 Three configurations of wave interaction with a moving gas: (a)...Figure 11.18 Sketch illustrating the basic configuration of a passive sensor...Figure 11.19 Principle of the line shift measurement using a reference gas c...Figure 11.20 Successive observations of the same atmospheric region would al...Figure 11.21 Computer‐generated models of the sun's surface velocity fields,...Figure 11.22 Simple diagram for a solar oscillation imager.Figure 11.23 Principle of line displacement measurement using the intensitie...Figure 11.24 MISR measurements of cloud heights associated with hurricanes F...Figure 11.25 MISR measurements of the extent and height of smoke from numero...Figure 11.26 Conceptual sketch showing wind measurement with a laser system....

12 Chapter 12Figure 12.1 Ionospheric electron density profiles for Venus, Earth, Jupiter,...Figure 12.2 Simple example illustrating the plasma oscillation.Figure 12.3 Behavior of the group velocity and phase velocity as a function ...Figure 12.4 Motion of an electron in a magnetic field and forces acting on t...Figure 12.5 Simple sketch illustrating the depth penetration in the ionosphe...Figure 12.6 Sketch showing how an ionospheric profile is approximated by a s...Figure 12.7 Latitude variations of the electron concentrations at different ...Figure 12.8 Geometry for a dual‐frequency occultation measurement using a GP...

13 1Figure A.1 Images of Death Valley, California, acquired in the three major r...Figure A.2 False illumination image derived by computer processing from the ...Figure A.3 Two perspective views generated from a combination of Landsat ima...Figure A.4 Surface perspective view generated from a combination of the Land...

14 2Figure B.1 Orbital velocity and period function of altitude for a circular o...Figure B.2 . Orientation of the orbit in space.Figure B.3 Satellite orbit precession as a function of orbital altitude h an...Figure B.4 Surface trace of a circular geosynchronous orbit with 45° inclina...Figure B.5 Surface trace of an elliptical geosynchronous orbit with 45° incl...Figure B.6 (a) Orbit nadir trace on a nonrotating planet. (b) Orbit trace on...Figure B.7 Periodic coverage patterns as a function of altitude for sun‐sync...Figure B.8 Coverage scenario of four different orbital altitudes that provid...Figure B.9 Elliptical orbit.Figure B.10 Ground trace for a 12‐hour elliptical orbit with an ellipticity ...

15 4Figure D.1 The relationship between the pulse and its replica for the case i...Figure D.2 The relationship between the pulse and its replica for the case i...

Introduction to the Physics and Techniques of Remote Sensing

Подняться наверх