Читать книгу Continuous Emission Monitoring - James A. Jahnke - Страница 97
Dilution Air Cleanup Systems
ОглавлениеThe air used for dilution must be clean and free of any of the gases being measured or else significant errors can occur. For example, 1 ppm of NO in the dilution air will give a response of 100 ppm in a dilution system having a dilution ratio of 100 : 1. Activated charcoal, sorbents, heatless dryers, and other gas scrubbing techniques are commonly employed to provide clean, dry air to the dilution system.
Because the dilution air cleanup system is central to the proper operation of the dilution extractive system, it is usually made redundant, with two equivalent systems. If maintenance is required, the system being serviced can be isolated, while the other system continues to provide purified air. A schematic of a redundant dilution air cleanup system is shown in Figure 3‐20.
In Figure 3‐20, manual valves are used to isolate air cleanup system for filters, scrubbers, or dryer maintenance, while the other system remains in operation. As instrument air enters, a coalescing filter is used to remove oil, water, and dirt from plant instrument air, in combination with a regulator to regulate the gas pressure. The air passes to a second‐stage coalescing filter backing up the filter/regulator and then to a soda lime scrubber, containing a mixture of Ca(OH)2, NaOH, and KOH for the removal of CO2. NOx and SO2 are removed in a scrubber containing a material such as Purafil, a chemisorbent media composed of activated alumina impregnated with potassium permanganate. Water and CO2 are removed in a heatless regenerative dryer, and SO2 and other gases are removed in an activated carbon scrubber. The regenerative dryer is filled with chemisorption media to remove CO2 and H2O from the gas stream by adsorption, absorption, and chemical oxidation processes. The purifiers contain two columns packed with a desiccant material (such as activated alumina), where one column is drying the air and the other one is simultaneously being regenerated. If CO is being measured, another regenerative dryer and a heated catalytic CO scrubber can be included in the system, as shown in the figure.
Figure 3‐20 Example of a redundant dilution air cleanup system.
The dilution air pressure must remain constant. Variations in this pressure due to inadequate pressure regulation can significantly affect dilution ratios. Some systems integrators have installed mass‐flow controllers to maintain this pressure at a constant level. The air supplied to a dilution system may also serve as the air supply for the zero calibration cycles of the system gas analyzers, as well as an air supply for the ozone generator of an NOx analyzer.
Figure 3‐21 illustrates the plumbing associated with a typical dilution extractive system using an EPM probe. Note that the design differs from that of a source‐level extractive system shown in Figure 3‐15, by eliminating the sample conditioner and sample pump. In the dilution system, the motive, dilution air is used in the ejector pump to both dilute the flue gas sample and send the diluted sample under positive pressure to the analyzer. However, in exchange for a flue‐gas conditioning system in a source‐level extractive system, a dilution air cleanup system is required for dilution systems. Of course, either requires periodic maintenance. Dilution systems typically include a control unit that includes gauges and meters for monitoring the eductor vacuum, dilution air pressure, temperatures, calibration gas flow, and so on.