Читать книгу Encyclopedia of Renewable Energy - James Speight G., James G. Speight - Страница 269

Butane Vapor-Phase Isomerization

Оглавление

Isomerization applications are to provide additional feedstock for alkylation units or high-octane fractions for gasoline blending. Straight-chain paraffins (n-butane) are converted to respective iso-compounds by continuous catalytic (aluminum chloride and noble metals) processes. Natural gasoline or light straight-run gasoline can provide feed by first fractionating as a preparatory step. High volumetric yields (>95%) and 40 to 60% conversion per pass are characteristic of the isomerization reaction.

The butane vapor phase isomerization process is a process for isomerizing n-butane to iso-butane using aluminum chloride catalyst on a granular alumina support and with hydrogen chloride as a promoter. A non-regenerable aluminum chloride catalyst is employed with various carriers in a fixed-bed or liquid contactor. Platinum or other metal catalyst processes utilize a fixed-bed operation and can be regenerable or non-regenerable. The reaction conditions vary widely depending on the particular process and feedstock, 40 to 480°C (100 to 900°F) and 150 to 1,000 psi; residence time in the reactor is 10 to 40 minutes.

The butane vapor phase isomerization process is a process for isomerizing n-butane to iso-butane using aluminum chloride catalyst on a granular alumina support and with hydrogen chloride as a promoter.

Encyclopedia of Renewable Energy

Подняться наверх