Читать книгу Astronomy Explained Upon Sir Isaac Newton's Principles - James Ferguson - Страница 10

CHAP. IV.
The Phenomena of the Heavens as seen from different parts of the Earth.

Оглавление

Table of Contents

We are kept to the Earth by gravity.


PLATE II. Fig. I.


Antipodes.


Axis of the World. It’s Poles. Fig. II.

122. We are kept to the Earth’s surface on all sides by the power of it’s central attraction; which, laying hold of all bodies according to their densities or quantities of matter without regard to their bulks, constitutes what we call their weight. And having the sky over our heads, go where we will, and our feet towards the centre of the Earth, we call it up over our heads, and down under our feet: although the same right line which is down to us, if continued through and beyond the opposite side of the Earth, would be up to the inhabitants on the opposite side. For, the inhabitants n, i, e, m, s, o, q, l stand with their feet toward the Earth’s centre C; and have the same figure of sky N, l, E, M, S, O, Q, L over their heads. Therefore, the point S is as directly upward to the inhabitant s on the south Pole as N is to the inhabitant n on the North Pole: so is E to the inhabitant e, supposed to be on the north end of Peru; and Q to the opposite inhabitant q on the middle of the island Sumatra. Each of these observers is surprised that his opposite or Antipode can stand with his head hanging downwards. But let either go to the other, and he will tell him that he stood as upright and firm on the place where he was as he now stands where he is. To all these observers the Sun, Moon, and Stars seem to turn round the points N and S as the Poles of the fixed Axis NCS; because the Earth does really turn round the mathematical line nCs as round an Axis of which n is the North Pole and s the South Pole. The Inhabitant U (Fig. II.) affirms that he is on the uppermost side of the Earth, and wonders how another at L can stand on the undermost side with his head hanging downwards. But U in the mean time forgets that in twelve hours time he will be carried half round with the Earth; and then be in the very situation that L now is, although as far from him as before. And yet, when U comes there, he will find no difference as to his manner of standing; only he will see the opposite half of the Heavens, and imagine the Heavens to have gone half round him.

How our Earth might have an upper and an under side.

123. When we see a globe hung up in a room we cannot help imagining it to have an upper and an under side, and immediately form a like idea of the Earth; from whence we conclude, that it is as impossible for persons to stand on the under side of the Earth as for pebbles to lie on the under side of a common Globe, which instantly fall down from it to the ground; and well they may, because the attraction of the Earth, being too strong for the attraction of the Globe, pulls them away. Just so would be the case with our Earth, if it were placed near a Globe much bigger than itself, such as Jupiter: for then it would really have an upper and an under side with respect to that large Globe; which, by it’s Attraction, would pull away every thing from the side of the Earth next to it; and only those on the top of the opposite or upper side could keep upon it. But there is no larger Globe near enough our Earth to overcome it’s central attraction; and therefore it has no such thing as an upper and an under side: for all bodies on or near it’s surface, even to the Moon, gravitate towards it’s center.

PLATE II.

124. Let any man imagine that the Earth and every thing but himself is taken away, and he left alone in the midst of indefinite Space; he could then have no idea of up or down; and were his pockets full of gold, he might take the pieces one by one, and throw them away on all sides of him, without any danger of losing them; for the attraction of his body would bring them all back by the ways they went, and he would be down to every one of them. But then, if a Sun or any other large body were created, and placed in any part of Space several millions of miles from him, he would be attracted towards it, and could not save himself from falling down to it.

Fig. I.


One half of the Heavens visible to an inhabitant on any part

of the Earth.


Phenomena at the Poles.


PLATE II.

125. The Earth’s bulk is but a point, as that at C, compared to the Heavens; and therefore every inhabitant upon it, let him be where he will, as at n, e, m, s, &c. sees one half of the Heavens. The inhabitant n, on the North Pole of the Earth, constantly sees the Hemisphere ENQ; and having the North Pole N of the Heavens just over his head, his [25]Horizon coincides with the Celestial Equator ECQ. Therefore all the Stars in the Northern Hemisphere ENC, between the Equator and North Pole, appear to turn round the line NC, moving parallel to the Horizon. The Equatoreal Stars keep in the Horizon, and all those in the Southern Hemisphere ESQ are invisible. The like Phenomena are seen by the observer s on the South Pole, with respect to the Hemisphere ESQ; and to him the opposite Hemisphere is always invisible. Hence, under either Pole, only one half of the Heavens is seen; for those parts which are once visible never set, and those which are once invisible never rise. But the Ecliptic YCX or Orbit which the Sun appears to describe once a year by the Earth’s annual motion, has the half YC constantly above the Horizon ECQ of the North Pole n; and the other half CX always below it. Therefore whilst the Sun describes the northern half YC of the Ecliptic he neither sets to the North Pole nor rises to the South; and whilst he describes the southern half CX he neither sets to the South Pole nor rises to the North. The same things are true with respect to the Moon; only with this difference, that as the Sun describes the Ecliptic but once a year, he is for half that time visible to each Pole in it’s turn, and as long invisible; but as the Moon goes round the Ecliptic in 27 days 8 hours, she is only visible for 13 days 16 hours, and as long invisible to each Pole by turns. All the Planets likewise rise and set to the Poles, because their Orbits are cut obliquely in halves by the Horizon of the Poles. When the Sun (in his apparent way from X) arrives at C, which is on the 20th of March, he is just rising to an observer at n on the North Pole, and setting to another at s on the South Pole. From C he rises higher and higher in every apparent Diurnal revolution ’till he comes to the highest point of the Ecliptic y, on the 21st of June, and then he is at his greatest Altitude, which is 2312 degrees, or the Arc Ey, equal to his greatest North declination; and from thence he seems to descend gradually in every apparent Circumvolution, ’till he sets at C on the 23d of September; and then he goes to exhibit the like Appearances at the South Pole for the other half of the year. Hence the Sun’s apparent motion round the Earth is not in parallel Circles, but in Spirals; such as might be represented by a thread wound round a Globe from Tropic to Tropic; the Spirals being at some distance from one another about the Equator, but gradually nearer to each other as they approach nearer to the Tropics.

Phenomena at the Equator.


Fig. I.

126. If the observer be any where on the Terrestrial Equator eCq, as suppose at e, he is in the Plane of the Celestial Equator; or under the Equinoctial ECQ; and the Axis of the Earth nCs is coincident with the Plane of his Horizon, extended out to N and S, the North and South Poles of the Heavens. As the Earth turns round the line NCS, the whole Heavens MOLl seem to turn round the same line, but the contrary way. It is plain that this observer has the Poles constantly in his Horizon, and that his Horizon cuts the Diurnal paths of all the Celestial bodies perpendicularly and in halves. Therefore the Sun, Planets, and Stars rise every day, and ascend perpendicularly above the Horizon for six hours, and passing over the Meridian, descend in the same manner for the six following hours; then set in the Horizon, and continue twelve hours below it. Consequently at the Equator the days and nights are equally long throughout the year. When the observer is in the situation e, he sees the Hemisphere SEN; but in twelve hours after, he is carried half round the Earth’s Axis to q, and then the Hemisphere SQN becomes visible to him; and SEN disappears, being hid by the Convexity of the Earth. Thus we find that to an observer at either of the Poles one half of the Sky is always visible, and the other half never seen; but to an observer on the Equator the whole Sky is seen every 24 hours.

The Figure here referred to, represents a Celestial globe of glass, having a Terrestrial globe within it; after the manner of the Glass Sphere invented by my generous friend Dr. Long, Lowndes’s Professor of Astronomy in Cambridge.

Remark.

127. If a Globe be held sidewise to the eye, at some distance, and so that neither of it’s Poles can be seen, the Equator ECQ and all Circles parallel to it, as DL, yzx, abX, MO, &c. will appear to be straight lines, as projected in this Figure; which is requisite to be mentioned here, because we shall have occasion to call them Circles in the following Article[26].

Phenomena between the Equator and Poles.


The Circles of perpetual Apparition and Occultation.

128. Let us now suppose that the observer has gone from the Equator e towards the North Pole n, and that he stops at i, from which place he then sees the Hemisphere MElNL; his Horizon MCL having shifted as many [27]Degrees from the Celestial poles N and S as he has travelled from under the Equinoctial E. And as the Heavens seem constantly to turn round the line NCS as an Axis, all those Stars which are as far from the North Pole N as the observer is from under, the Equinoctial, namely the Stars north of the dotted parallel DL, never set below the Horizon; and those which are south of the dotted parallel MO never rise above it. Hence, the former of these two parallel Circles is called the Circle of perpetual Apparition, and the latter the Circle of perpetual Occultation: but all the Stars between these two Circles rise and set every day. Let us imagine many Circles to be drawn between these two, and parallel to them; those which are on the north side of the Equinoctial will be unequally cut by the Horizon MCL, having larger portions above the Horizon than below it; and the more so, as they are nearer to the Circle of perpetual Apparition; but the reverse happens to those on the south side of the Equinoctial, whilst the Equinoctial is divided in two equal parts by the Horizon. Hence, by the apparent turning of the Heavens, the northern Stars describe greater Arcs or Portions of Circles above the Horizon than below it; and the greater as they are farther from the Equinoctial towards the Circle of perpetual Apparition; whilst the contrary happens to all Stars south of the Equinoctial: but those upon it describe equal Arcs both above and below the Horizon, and therefore they are just as long above as below it.

PLATE II.

129. An observer on the Equator has no Circle of perpetual Apparition or Occultation, because all the Stars, together with the Sun and Moon, rise and set to him every day. But, as a bare view of the Figure is sufficient to shew that these two Circles DL and MO are just as far from the Poles N and S as the observer at i (or one opposite to him at o) is from the Equator ECQ; it is plain, that if an observer begins to travel from the Equator towards either Pole, his Circle of perpetual Apparition rises from that Pole as from a Point, and his Circle of perpetual Occultation from the other. As the observer advances toward the nearer Pole, these two Circles enlarge their diameters, and come nearer one another, until he comes to the Pole; and then they meet and coincide in the Equator. On different sides of the Equator, to observers at equal distances from it, the Circle of perpetual Apparition to one is the Circle of perpetual Occultation to the other.

Why the Stars always describe the same parallel of motion, and the Sun a different.

130. Because the Stars never vary their distances from the Equinoctial, so as to be sensible in an age, the lengths of their diurnal and nocturnal Arcs are always the same to the same places on the Earth. But as the Earth goes round the Sun every year in the Ecliptic, one half of which is on the north side of the Equinoctial and the other half on it’s south side, the Sun appears to change his place every day, so as to go once round the Circle YCX every year § 114. Therefore whilst the Sun appears to advance northward, from having described the Parallel abX touching the Ecliptic in X the days continually lengthen and the nights shorten, until he comes to y and describes the Parallel yzx, when the days are at the longest and the nights at the shortest: for then, as the Sun goes no farther northward, the greatest portion that is possible of the diurnal Arc yz is above the Horizon of the inhabitant i; and the smallest portion zx below it. As the Sun declines southward from y he describes smaller diurnal and greater nocturnal Arcs, or Portions of Circles, every day; which causeth the days to shorten and nights to lengthen, until he arrives again at the Parallel abX; which having only the small part ab above the Horizon MCL, and the great part bX below it, the days are at the shortest and the nights at the longest; because the Sun recedes no farther south, but returns northward as before. It is easy to see that the Sun must be in the Equinoctial ECQ twice every year, and then the days and nights are equally long; that is, 12 hours each. These hints serve at present to give an idea of some of the Appearances resulting from the motions of the Earth; which will be more particularly described in the tenth Chapter.

Fig. I.


Parallel, Oblique, and Right sphere, what.

131. To an observer at either Pole, the Horizon and Equinoctial are coincident; and the Sun and Stars seem to move parallel to the Horizon: therefore, such an observer is said to have a Parallel position of the Sphere. To an observer any where between the Poles and Equator, the Parallels described by the Sun and Stars are cut obliquely by the Horizon, and therefore he is said to have an Oblique position of the Sphere. To an observer any where on the Equator, the Parallels of Motion, described by the Sun and Stars are cut perpendicularly, or at Right angles, by the Horizon; and therefore he is said to have a Right position of the Sphere. And these three are all the different ways that the Sphere can be posited to all people, on the Earth.

Astronomy Explained Upon Sir Isaac Newton's Principles

Подняться наверх