Читать книгу Connected: The Amazing Power of Social Networks and How They Shape Our Lives - James Fowler - Страница 13
RULE 5: THE NETWORK HAS A LIFE OF ITS OWN
ОглавлениеSocial networks can have properties and functions that are neither controlled nor even perceived by the people within them. These properties can be understood only by studying the whole group and its structure, not by studying isolated individuals. Simple examples include traffic jams and stampedes. You cannot understand a traffic jam by interrogating one person fuming at the wheel of his car, even though his immobile automobile contributes to the problem. Complex examples include the notion of culture, or, as we shall see, the fact that groups of interconnected people can exhibit complicated, shared behaviors without explicit coordination or awareness.
Many of the simple examples can be understood best if we completely ignore the will and cognition of the individuals involved and treat people as if they were “zero-intelligence agents.” Consider the human waves at sporting events that first gained worldwide notice during the 1986 World Cup in Mexico. In this phenomenon, originally called La Ola (“the wave”), sequential groups of spectators leap to their feet and raise their arms, then quickly drop back to a seated position. The effect is quite dramatic. A group of physicists who usually study waves on the surface of liquids were sufficiently intrigued that they decided to study a collection of filmed examples of La Ola in enormous soccer stadiums; they noticed that these waves usually rolled in a clockwise direction and consistently moved at a speed of twenty “seats per second.”13
To understand how such human waves start and propagate, the scientists employed mathematical models of excitable media that are ordinarily used to understand inanimate phenomena such as the spread of a fire through a forest or the spread of an electrical signal through cardiac muscle. An excitable medium is one that flips from one state to another (like a tree that is either on fire or not) depending on what others around it are doing (are nearby trees on fire?). And these models yielded accurate predictions of the social phenomenon, suggesting that La Ola could be understood even if we knew nothing about the biology or psychology of humans. Indeed, the wave cannot be understood by studying the actions of a single individual standing up and sitting down. It is not orchestrated by someone with a megaphone atop a cooler. It has a life of its own.
Mathematical models of flocks of birds and schools of fish and swarms of insects that move in unison demonstrate the same point: there is no central control of the movement of the group, but the group manifests a kind of collective intelligence that helps all within it to flee or deter predators. This behavior does not reside within individual creatures but, rather, is a property of groups. Examination of flocks of birds “deciding” where to fly reveals that they move in a way that accounts for the intentions of all the birds, and, even more important, the direction of movement is usually the best choice for the flock. Each bird contributes a bit, and the flock’s collective choice is better than an individual bird’s would be.14 Similar to La Ola and to flocking birds, social networks obey rules of their own, rules that are distinct from the people who form them. But now, people are not having fun in a stadium: they are donating organs or gaining weight or feeling happy.
In this regard, we say that social networks have emergent properties. Emergent properties are new attributes of a whole that arise from the interaction and interconnection of the parts. The idea of emergence can be understood with an analogy: A cake has a taste not found in any one of its ingredients. Nor is its taste simply the average of the ingredients’ flavors—something, say, halfway between flour and eggs. It is much more than that. The taste of a cake transcends the simple sum of its ingredients. Likewise, understanding social networks allows us to understand how indeed, in the case of humans, the whole comes to be greater than the sum of its parts.