Читать книгу Principles of Virology, Volume 1 - Jane Flint, S. Jane Flint - Страница 145
BOX 3.6 METHODS Spontaneous and induced mutations
ОглавлениеIn the early days of experimental virology, mutant viruses could be isolated only by screening stocks for interesting phenotypes, for none of the tools that we now take for granted, such as restriction endonucleases, efficient DNA sequencing methods, and molecular cloning procedures, were developed until the mid to late 1970s. RNA virus stocks usually contain a high proportion of mutants, and it is only a matter of devising the appropriate selection conditions (e.g., high or low temperature or exposure to drugs that inhibit viral reproduction) to select mutants with the desired phenotype from the total population. For example, the live attenuated poliovirus vaccine strains developed by Albert Sabin are mutants that were selected from a virulent virus stock (Volume II, Fig. 7.11).
The low spontaneous mutation rate of DNA viruses necessitated random mutagenesis by exposure to a chemical mutagen. Mutagens such as nitrous acid, hydroxylamine, and alkylating agents chemically modify the nucleic acid in preparations of virus particles, resulting in changes in base-pairing during subsequent genome replication. Base analogs, intercalating agents, or UV light are applied to the infected cell to cause changes in the viral genome during replication. Such agents introduce mutations more or less at random. Some mutations are lethal under all conditions, while others have no effect and are said to be silent.
To facilitate identification of mutants, the population must be screened for a phenotype that can be identified easily in a plaque assay. One such phenotype is temperature-sensitive viability of the virus. Virus mutants with this phenotype reproduce well at low temperatures, but poorly or not at all at high temperatures. The permissive and nonpermissive temperatures are typically 33 and 39°C, respectively, for viruses that replicate in mammalian cells. Other commonly sought phenotypes are changes in plaque size or morphology, drug resistance, antibody resistance, and host range (that is, loss of the ability to reproduce in certain hosts or host cells).