Читать книгу Earth Materials - John O'Brien - Страница 76
Carbon isotopes
ОглавлениеThree isotopes of carbon occur naturally in Earth materials: carbon‐12 (12C), carbon‐13 (13C) and the radioactive carbon‐14 (14C), used in radiocarbon dating. Each carbon isotope contains six protons in its nucleus; the remaining mass results from the number of neutrons (six, seven or eight) in the nucleus.12C constitutes >98.9% of the stable carbon on Earth, and13C constitutes most of the other 1.1%.
When organisms synthesize organic molecules, they selectively utilize12C in preference to13C so that organic molecules have lower than average13C/12C ratios. Enrichment of the organic material in12C causes the13C/12C in the water column to increase. Ordinarily, there is a rough balance between the selective removal of12C from water during organic synthesis and its release back to the water column by bacterial decomposition, respiration, and other processes. Mixing processes produce a relatively constant13C/12C ratio in the water column. However, during periods of stagnant circulation in the oceans or other water bodies, disoxic–anoxic conditions develop in the lower part of the water column and/or in bottom sediments. These conditions inhibit bacterial decomposition (Chapters 11 and 14) and lead to the accumulation of12C‐rich organic sediments. These sediments have unusually low13C/12C ratios. As they accumulate, the remaining water column, depleted in12C, develops a higher ratio of13C/12C. However, any process, such as the return of vigorous circulation and oxidizing conditions, that rapidly release the12C‐rich carbon from organic sediments, is associated with a rapid decrease in13C/12C. By carefully plotting changes in13C/12C ratios over time, paleo‐oceanographers have been able to document both local and global changes in oceanic circulation. In addition, because different organisms selectively incorporate different ratios of12C to13C, the evolution of new groups of organisms and/or the extinction of old groups of organisms can sometimes be tracked by rapid changes in the13C/12C ratios of carbonate shells in marine sediments or organic materials in terrestrial soils.
13C/12C ratios are generally expressed with respect to a standard in terms of δ13C. The standard once again is the13C/12C ratio of the Pee Dee Belemnite, or PDB. δ13C is usually expressed in parts per thousand (mils) and calculated from:
Box 3.1 illustrates an excellent example of how oxygen and carbon isotope ratios can be used to document Earth history, in this case a period of sudden global warming that occurred 55 million years ago.