Читать книгу Life in the Open Ocean - Joseph J. Torres - Страница 62

References

Оглавление

1 Baldwin, J. (1971). Adaptation of enzymes to temperature: acetylcholinesterases in the central nervous systems of fishes. Comparative Biochemistry and Physiology 40: 181–187.

2 Baldwin, J. and Hochachka, P.W. (1970). Functional significance of isoenzymes in thermal acclimatization: acetylcholinesterase from trout brain. Biochemical Journal 116: 883–887.

3 Belman, B.W. and Childress, J.J. (1976). Circulatory adaptations to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. Biological Bulletin 150: 15–37.

4 Brett, J.R. (1952). Temperature tolerance in young Pacific salmon, genus Oncorhynchus. Journal of the Fisheries Research Board of Canada 9: 265–323.

5 Brett, J.R. and Groves, T.D.D. (1979). Physiological energetics. In: Fish Physiology, vol. 8 (eds. W.S. Hoar, D.J. Randall and J.R. Brett). New York: Academic Press.

6 Bridges, C.R. (1994). Bohr and root effects in cephalopod hemocyanins – paradox or pressure in Sepia oficinalis? In: Physiology of Cephalopod Molluscs: Lifestyle and Performance Adaptations (eds. H.O. Portner, R.K. O’dor and D.L. Macmillan). New York: Gordon and Breach.

7 Brix, O., Bardgard, A., Cau, A. et al. (1989). Oxygen binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution. Journal of Experimental Zoology 252: 34–42.

8 Campenot, R.B. (1975). The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular junction. Comparative Biochemistry and Physiology 52B: 133–140.

9 Childress, J.J. (1968). Oxygen minimum layer: vertical distribution and respiration of the mysid Gnathophausia ingens. Science 160: 1242–1243.

10 Childress, J.J. (1971). Respiratory adaptations to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. Biological Bulletin 141: 109–121.

11 Childress, J.J. (1975). The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the oxygen minimum layer off Southern California. Comparative Biochemistry and Physiology 50A: 787–799.

12 Childress, J.J. and Mickel, T.J. (1985). Metabolic rates of animals from the hydrothermal vents and other deep‐sea habitats. Biological Society of Washington 6: 249–260.

13 Childress, J.J. and Nygaard, M.H. (1973). The chemical composition of midwater fishes as a function of depth of occurrence off southern California. Deep‐Sea Research 20: 1093–1109.

14 Childress, J.J. and Seibel, B.A. (1998). Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. Journal of Experimental Biology 201: 1223–1232.

15 Childress, J.J. and Somero, G.N. (1979). Depth‐related enzymic activities in muscle, brain, and heart of deep‐living pelagic marine teleosts. Marine Biology 52: 273–283.

16 Childress, J.J. and Thuesen, E.V. (1995). Metabolic potentials of deep‐sea fishes: a comparative approach. In: Biochemistry and Molecular Biology of Fishes (eds. P.W. Hochachka and T.P. Mommsen). Berlin: Elsevier Science.

17 Childress, J.J., Cowles, D.L., Favuzzi, J.A., and Mickel, T.J. (1990). Metabolic rates of benthic deep‐sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep‐Sea Research 37: 929–949.

18 Cossins, A.R. and Bowler, K. (1987). Temperature Biology of Animals. London: Chapman and Hall.

19 Cossins, A.R. and MacDonald, A.G. (1984). Homeoviscous theory under pressure. 2. The molecular order of membranes from deep‐sea fish. Biochimica et Biophysica Acta 776: 144–150.

20 Cowles, D.L., Childress, J.J., and Wells, M.E. (1991). Metabolic rates of midwater crustaceans as a function of depth of occurrence off the Hawaiian Islands: food availability as a selective factor? Marine Biology 110: 75–83.

21 Diaz, R.J. and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: An Annual Review 33: 245–303.

22 Donnelly, J. and Torres, J.J. (1988). Oxygen consumption of midwater fishes and crustaceans from the eastern Gulf of Mexico. Marine Biology 97: 483–494.

23 Drazen, J.C. and Seibel, B.A. (2007). Depth‐related trends in metabolism of benthic and benthopelagic deep‐sea fishes. Limnology and Oceanography 52: 2306–2316.

24 Ebbecke, U. (1944). Lebensvorgange unter der Einwirking hoher drucke. Journal of Biological Chemistry 45: 34–183.

25 Eno, C.N. (1994). The morphometrics of cephalopod gills. Journal of the Marine Biological Association of the United Kingdom 74: 687–706.

26 Flugel, H. and Schlieper, C. (1970). The effects of pressure on marine invertebrates and fishes. In: High Pressure Effects on Cellular Processes (ed. A.M. Zimmerman). New York and London: Academic Press.

27 Fontaine, M. (1928). Les forte pressions et la consommation d'oxygene de quelques animaux marines. Influences de la taille de l'animal. Comptes Rendus des Séances et Memoires de la Societe de Biologie 99: 1789–1790.

28 Fry, F.E.J. and Hochachka, P.W. (1970). Fish. In: Comparative Physiology of Thermoregulation (ed. G.C. Whittow). New York: Academic Press.

29 Gibbs, A.G. (1997). Biochemistry at depth. In: Deep‐Sea Fishes (eds. D.J. Randall and A.P. Farrell). San Diego: Academic Press.

30 Gibbs, A.G. and Somero, G.N. (1989). Pressure adaptation of Na+, K+‐ATPase in gills of marine teleosts. Journal of Experimental Biology 143: 475–492.

31 Gibbs, A.G. and Somero, G.N. (1990). Pressure adaptation of teleost gill Na+,K+‐adenosine triphosphatase: role of the lipid and protein moieties. Journal of Comparative Physiology B 160: 431–439.

32 Gjøsaeter, J. (1984). Mesopelagic fish: a large potential resource in the Arabian Sea. Deep‐Sea Research 31: 1019–1035.

33 Graves, J.E. and Somero, G.N. (1982). Electrophoretic and functional enzymic evolution in four species of eastern Pacific barracudas from different thermal environments. Evolution 36: 97–106.

34 Grundfest, H. (1936). Effects of hydrostatic pressures upon the excitability, the recovery, and the potential sequence of frog nerve. Cold Spring Harbor Symposia on Quantitative Biology 5: 179–187.

35 Hazel, J.R. and Carpenter, R. (1985). Rapid changes in the phospholipid composition of gill membranes during thermal acclimation of the rainbow trout, Salmo gairdneri. Journal of Comparative Physiology B 155: 597–602.

36 Hazel, J.R. and Williams, E.E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research 29: 167–227.

37 Hitchcock, G.L., Wiebinga, C., and Ortner, P.B. (1997). CTD hydrographic data from the Global Ocean Ecosystem Dynamics (GLOBEC) Indian Ocean Cruises. Technical Report 97‐006. University of Miami.

38 Hochachka, P.W. (1980). Living Without Oxygen. Cambridge: Harvard University Press.

39 Hochachka, P.W. and Guppy, M. (1987). Metabolic Arrest and the Control of Biological Time. Cambridge: Harvard University Press.

40 Hochachka, P.W. and Somero, G.N. (1973). Strategies of Biochemical Adaptation. Philadelphia: Saunders.

41 Hochachka, P.W. and Somero, G.N. (1984). Biochemical Adaptation. Princeton University Press: Princeton.

42 Hochachka, P.W. and Somero, G.N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford University Press.

43 Kawall, H.G., Torres, J.J., Sidell, B.D., and Somero, G.N. (2002). Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain. Marine Biology 140: 279–286.

44 Longhurst, A.R. (1998). Ecological Geography of the Sea. London: Academic Press.

45 Madan, J.J. and Wells, M.J. (1996). Why squid breathe easy. Nature 380: 590.

46 Meek, R.P. and Childress, J.J. (1973). Respiration and the effect of pressure in the pelagic fish Anoplogaster cornuta (Beryciformes). Deep‐Sea Research 20: 1111–1118.

47 Menzies, R.J. and Wilson, J.B. (1961). Preliminary field experiments on the relative importance of pressure and temperature on the penetration of marine invertebrates into the deep‐sea. Oikos 12: 302–309.

48 Murray, C.N. and Riley, J.P. (1969). The solubility of gases in distilled water and sea water‐II. Oxygen. Deep‐Sea Research 16: 311–320.

49 Napora, T.A. (1964). The effect of hydrostatic pressure on the prawn, Systellaspis debilis. Narragansett Marine Laboratory Occasional Publication 2: 92–94.

50 Newell, R.C. and Northcroft, H.R. (1967). Metabolic independence of temperature over limited ranges in poikilotherms. Journal of Zoology 151: 277–298.

51 Place, A.R. and Powers, D.A. (1979). Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proceedings of the National Academy of Sciences USA 76: 2354–2358.

52 Precht, H. (1958). Theory of temperature adaptation in cold‐blooded animals. In: Physiological Adaptation (ed. C.L. Prosser). Washington, DC: American Physiological Society.

53 Prosser, C.L. (1973). Comparative Animal Physiology. Philadelphia: Saunders.

54 Quetin, L.B. and Childress, J.J. (1976). Respiratory adaptations of Pleuroncodes planipes Stimpson to its environment off Baja California. Marine Biology 38: 327–334.

55 Rabalais, N.N., Wiseman, W.J., and Turner, R.E. (1994). Comparison of continuous records of near‐bottom dissolved oxygen from the hypoxia zone along the Louisiana coast. Estuaries 17: 850–861.

56 Regnard, P. (1884). Effect des hautes pressions sur les animaux marins. Comptes Rendus des Séances et Memoires de la Societe de Biologie 36: 394–395.

57 Regnard, P. (1891). Recherches experimentales sur les conditions physiques de la vie dans les eaux. Paris: Masson.

58 Sanders, N.K. and Childress, J.J. (1990). Adaptations to the deep‐sea oxygen minimum layer: oxygen binding by the hemocyanin of the bathypelagic mysid, Gnathophausia ingens Dohrn. Biological Bulletin 178: 286–294.

59 Scholander, P.F., Flagg, W., Walter, V., and Irving, L. (1953). Climatic adaptation in arctic and tropical poikilotherms. Physiological Zoology 26: 67–92.

60 Seibel, B.A. (2011). Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. Journal of Experimental Biology 214: 326–336.

61 Seibel, B.A. and Drazen, J.C. (2007). The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society B 362: 1–18.

62 Seibel, B.A., Thuesen, E.V., Childress, J.J., and Gorodezky, L.A. (1997). Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biological Bulletin 192: 262–278.

63 Seibel, B.A., Chausson, F., Lallier, F.H. et al. (1999). Vampire blood: respiratory physiology of the vampire squid (Cephalopoda:Vampyromorpha) in relation to the oxygen minimum layer. Experimental Biology Online 4: 1–10.

64 Seibel, B.A., Schneider, J.L., Kaartvedt, S. et al. (2016). Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integrative and Comparative Biology 56: 510–523.

65 Sidell, B.D., Wilson, F.R., Hazel, J., and Prosser, C.L. (1973). Time course of thermal acclimation in goldfish. Journal of Comparative Physiology 84: 119–127.

66 Siebenaller, J.F. and Somero, G.N. (1979). Pressure adaptive differences in the binding properties of the muscle‐type (M4) lactate dehydrogenases of shallow‐ and deep‐living marine fishes. Journal of Comparative Physiology 129: 295–300.

67 Smith, K.L. and Brown, N.O. (1983). Oxygen consumption of pelagic juveniles and demersal adults of the deep‐sea fish Sebastolobus altivelis, measured at depth. Science 184: 72–73.

68 Smith, D.A., Hofmann, E.E., Klinck, J.M., and Lascara, C.M. (1999). Hydrography and circulation of the West Antarctic Peninsula continental shelf. Deep Sea Research, Part I 46: 925–949.

69 Somero, G.N. (1975). The role of isozymes in adaptation to varying temperatures. In: Isozymes II: Physiological Function (ed. C.L. Markert). New York: Academic Press.

70 Somero, G.N. and Siebenaller, J.F. (1979). Inefficient lactate dehydrogenases of deep‐sea fishes. Nature 282: 100–102.

71 Spyropoulos (1957). Response of single nerve fibers at different hydrostatic pressures. American Journal of Physiology 189: 214–218.

72 Sverdrup, H.U., Johnson, M.W., and Fleming, R.H. (1942). The Oceans, Their Physics, Chemistry, and General Biology. Englewood Cliffs: Prentice‐Hall.

73 Teal, J.M. (1971). Pressure effects of the respiration of vertically migrating decapod Crustacea. American Zoologist 11: 571–576.

74 Teal, J.M. and Carey, F.G. (1967). Effects of pressure and temperature on the respiration of euphausiids. Deep‐Sea Research 14: 725–733.

75 Torres, J.J. and Somero, G.N. (1988). Metabolism, enzymic activities, and cold adaptation in Antarctic mesopelagic fishes. Marine Biology 98: 169–180.

76 Torres, J.J., Belman, B.W., and Childress, J.J. (1979). Oxygen consumption rates of midwater fishes as a function of depth of occurrence. Deep‐Sea Research 26: 185–197.

77 Torres, J.J., Aarset, A.V., Donnelly, J. et al. (1994). Metabolism of Antarctic micronektonic Crustacea as a function of depth of occurrence and season. Marine Ecology Progress Series 113: 207–219.

78 Vinogradov, M.E. (1970). Vertical Distribution of the Oceanic Zooplankton. Jerusalem: Israel program for scientific translations.

79 Wells, M.J. and Wells, J. (1983). The circulatory response to acute hypoxia in Octopus. Journal of Experimental Biology 104: 59–71.

80 Wells, M.J., Wells, J., and O’dor, R.K. (1992). Life at low oxygen tensions: the behavior and physiology of Nautilus pompilius and the biology of extinct forms. Journal of the Marine Biological Association of the United Kingdom 72: 313–328.

81 Winberg, G.G. (1956). Rate of Metabolism and Food Requirements of Fishes. Dartmouth, Nova Scotia: Fisheries Research Board of Canada.

82 Wishner, K.F., Gowing, M.M., and Gelfman, C. (2000). Living in suboxia: ecology of an Arabian Sea copepod. Limnology and Oceanography 45: 1576–1593.

83 Withers, P.C. (1992). Comparative Animal Physiology. Orlando: Saunders.

84 Wohlschlag, D.E. (1960). Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecology 41: 287–292.

Life in the Open Ocean

Подняться наверх