Читать книгу Evolution: Its nature, its evidence, and its relation to religious thought - Joseph LeConte - Страница 6

CHAPTER I.
ITS SCOPE AND DEFINITION.

Оглавление

Table of Contents

A Type of Evolution.—Every one is familiar with the main facts connected with the development of an egg. We all know that it begins as a microscopic germ-cell, then grows into an egg, then organizes into a chick, and finally grows into a cock; and that the whole process follows some general, well-recognized law. Now, this process is evolution. It is more—it is the type of all evolution. It is that from which we get our idea of evolution, and without which there would be no such word. Whenever and wherever we find a process of change more or less resembling this, and following laws similar to those determining the development of an egg, we call it evolution.

Universality of Evolution.—Evolution as a process is not confined to one thing, the egg, nor as a doctrine is it confined to one department of science—biology. The process pervades the whole universe, and the doctrine concerns alike every department of science—yea, every department of human thought. It is literally one half of all science. Therefore, its truth or falseness, its acceptance or rejection, is no trifling matter, affecting only one small corner of the thought-realm. On the contrary, it affects profoundly the foundations of philosophy, and therefore the whole domain of thought. It determines the whole attitude of the mind toward Nature and God.

I have said evolution constitutes one half of all science. This may seem to some a startling proposition. I stop to make it good.

Every system of correlated parts may be studied from two points of view, which give rise to two departments of science, one of which—and the greater and more complex—is evolution. The one concerns changes within the system by action and reaction between the parts, producing equilibrium and stability; the other concerns the progressive movement of the system, as a whole, to higher and higher conditions—the movement of the point of equilibrium itself, by constant slight disturbance and readjustment of parts on a higher plane, with more complex inter-relations. The one concerns the laws of sustentation of the system, the other the laws of evolution. The one concerns things as they are, the other the process by which they become so. Now, Nature as a whole is such a system of correlated parts. Every department and sub-department of Nature, whether it be the solar system or the earth, or the organic kingdom, or human society, or the human body, is such a system of correlated parts, and is therefore subject to evolution. We can best make this thought clear by examples:

1. Take, then, the human body. This complex and beautiful system of correlated and nicely-adjusted parts may be studied in a state of maturity and equilibrium, in which all the organs and functions by action and reaction co-operate to produce perfect stability, health, and physical happiness. This study is physiology. Or else the same may be studied in a state of progressive change. Now, we perceive that the stability is never perfect—the point of equilibrium is ever moving. By the ever-changing number and relative power of the co-operating parts the equilibrium is ever being disturbed, only to be readjusted on a higher plane, with still more beautiful and complex inter-relations. This is growth, development, evolution. Its study is called embryology. 2. Take another example—the solar system. We may study sun, planets, and satellites in their mutual actions and reactions, co-operating to produce perfect equilibrium, stability, beautiful order, and musical harmony. This is the ideal of physical astronomy as embodied in Laplace’s “Mécanique Céleste.” Or we may study the same in its origin and progressive change. Now, we perceive that equilibrium and stability are never absolutely perfect, but, on the contrary, there is continual disturbance with readjustment on a higher plane—continual introduction of infinitesimal discord, only to enhance the grandeur and complexity of the harmonic relations. This is the nebular hypothesis—the theory of the development of the solar system. It is cosmogony; it is evolution. 3. Again: society may be studied in the mutual play of all its social functions so adjusted as to produce social equilibrium, happiness, prosperity, and good government. This is social statics. But equilibrium and stability are never perfect. Permanent social equilibrium would be social stagnation and decay. Therefore, we must study society also in its onward movement—the equilibrium ever disturbed, only to be readjusted on a higher plane with more and more complexly inter-related parts. This is dynamics—social progress. It is evolution. 4. Again: the earth, as a whole, may be studied in its present forms, and the mutual action of all its parts—lands and seas, mountains and valleys, rivers, gulfs, and bays, currents of air and ocean—and the manner in which all these, by action and reaction, co-operate to produce climates and physical conditions such as we now find them. This is physical geography. Or, we may study the earth in its gradual progress toward its present condition—the changes which have taken place in all these parts, and consequent changes in climate; in a word, the gradual process of becoming what it now is. This is physical geology—it is evolution. 5. Lastly, we may study the whole organic kingdom in its entirety as we now find it—the mutual relation of different classes, orders, genera, and species to each other and to external conditions, and the action and reaction of these in the struggle for life—the geographical distribution of species and their relation to climate and other physical conditions, the whole constituting a complexly adjusted and permanent equilibrium. This is a science of great importance, but one not yet distinctly conceived, much less named.1 Or, we may study the same in its gradual progressive approach, throughout all geological times, toward the present condition of things, by continual changes in the parts, and therefore disturbance of equilibrium and readjustment on a higher plane with more complex inter-relations. This is development of the organic kingdom. In the popular mind it is, par excellence, evolution.

We might multiply examples without limit. There are the same two points of view on all subjects. As already said, in the one we are concerned with things as they are; in the other, with the process by which they became so. This “law of becoming” in all things—this universal law of progressive inter-connected change—may be called the law of continuity. We all recognize the universal relation of things, gravitative or other, in space. This asserts the universal causal relation of things in time. This is the universal law of evolution.

But it has so happened that in the popular mind the term evolution is mostly confined to the development of the organic kingdom, or the law of continuity as applied to this department of Nature. The reason of this is that this department was the last to acknowledge the supremacy of this law; this is the domain in which the advocates of supernaturalism in the realm of Nature had made their last stand. But it is wholly unphilosophical thus to limit the term. If there be any evolution, par excellence, it is evolution of the individual or embryonic development. This is the clearest, the most familiar, and most easily understood, and therefore the type of evolution. We first take our idea of evolution from this form, and then extend it to other forms of continuous change following a similar law. But, since the popular mind limits the term to development of the organic kingdom, and since, moreover, this is now the battleground between the advocates of continuity and discontinuity—of naturalism and supernaturalism in the realm of Nature—what we shall say will have reference chiefly to this department, though we shall illustrate freely by reference to other forms of evolution.

Evolution: Its nature, its evidence, and its relation to religious thought

Подняться наверх