Читать книгу Evolution: Its nature, its evidence, and its relation to religious thought - Joseph LeConte - Страница 8

The Above Three Laws Are Laws of Evolution.

Оглавление

Table of Contents

These three laws we have shown are distinctly recognizable in the succession of organic forms in the geological history of the earth. They are, therefore, undoubtedly the general laws of succession. Are they also laws of evolution? Are they also discoverable in embryonic development, the type of evolution? They are, as we now proceed to show:

Differentiation.—In reproduction the new individual appears: 1. As a germ-cell—a single microscopic living cell. 2. Then, by growth and multiplication of cells, it becomes an egg. This may be characterized as an aggregate of similar cells, and therefore is not yet differentiated into tissues and organs. In other words, it is not yet visibly organized; for organization may be defined as the possession of different parts, performing different functions, and all co-operating for one given end, viz., the life and well-being of the organism. 3. Then commences the really characteristic process of development, viz., differentiation or diversification. The cells are at first all alike in form and function, for all are globular in form, and each performs all the functions necessary for life. From this common point now commences development in different directions, which may be compared to a branching and rebranching, with more and more complex results, according as the animal is higher in the scale of organization and advances toward a state of maturity. First, the cell-aggregate (egg) separates into three distinct layers of cells, called ecto-blast, endo-blast, and meso-blast. These by further differentiation form the three fundamental groups of organs and functions, viz., the nervous system, the nutritive system, and the blood system: the first presiding over the exchange of force or influence, by action and reaction with the environment, and between the different parts of the organism; the second presiding over the exchange of matter with the environment, by absorption and elimination; the third presiding over exchanges of matter between different parts of the organism. The first system of functions and organs may be compared to a system of telegraphy, foreign and domestic; the second to foreign commerce; the third to an internal carrying-trade. Following out any one of these groups in higher animals, say the nervous system, it quickly differentiates again into two sub-systems, viz., cerebro-spinal and ganglionic, each having its own distinctive functions, which we can not stop to explain. Then the cerebro-spinal again differentiates into voluntary and reflex systems. All of these have meanwhile separated into sensory and motor centers and fibers. Then, taking only the sensory fibers, these again are differentiated into five special senses, each having a wholly different function. Then, finally, taking any one of these, say the sense of touch or feeling, this again is differentiated into many kinds of fibers, each responding to a different impression, some to heat, others to cold, still others to pressure, etc. We have taken the nervous system; but the same differentiation and redifferentiation takes place in all other systems, and is carried to higher and higher points according to the position in the scale of the animal which is to be formed.

Or, to vary the mode of presentation a little, the cells of the original aggregate, commencing all alike, immediately begin to take on different forms, in order to perform different functions. Some cells take on a certain form and aggregate themselves to form a peculiar tissue which we call muscle, and which does nothing else, can do nothing else, than contract under stimulus. Another group of cells take on another peculiar form and aggregate themselves to form another and very different tissue, viz., nervous tissue, which does nothing and can do nothing but carry influence back and forth between the great external world and the little world of consciousness within. Still another group of cells take still another form and aggregate to form still another tissue, viz., the epithelial, whose only function is to absorb nutritive and eliminate waste matters. Thus, by differentiation of form and limitation of function, or division of labor, the different parts of the organism are bound more and more closely together by mutual dependence, and the whole becomes more and more distinctly individuated, and separation of parts becomes more and more a mutilation, and finally becomes impossible without death. This process, as already said, reaches its highest point only in the later stages of development of the highest animals.

Progress.—The law of progress is, of course, admitted to be a law of ontogeny; but observe here, also, it is true only of the whole and not necessarily of all the parts, except from the point of view of the whole. Thus, for example, starting all from a common form or generalized type, some cells advance to the dignity of brain-cells, whose function is somehow connected with the generation or at least the manifestation of thought, will, and emotion; other cells descend to the position of kidney-cells, whose sole function is the excretion of urine. But here, also, the highest cells are successively higher, and the whole aggregate is successively nobler and more complex. It is again a branching and rebranching, in every direction, some going upward, some downward, some horizontally, anywhere, everywhere, to increase the complexity of relations internal and external, and therefore to elevate the plane of the whole.

Cyclical Movement.—Lastly, the law of cyclical movement is also a law of ontogeny and therefore of evolution. This law, however, is less fundamental than the other two, and is, therefore, less conspicuous in the ontogenic than in the phylogenic series. It is conspicuous only in the later stages of ontogeny, and in other higher kinds of evolution, such as social evolution. For example, in the ontogenic development of the body and mind from childhood to manhood we have plainly successive culminations and declines of higher and higher functions. In bodily development we have culminating first the nutritive functions, then the reproductive and muscular, and last the cerebral. In mental development we have culmination first of the receptive and retentive faculties in childhood, then of imaginative and æsthetic faculties in youth and young manhood; then of the reflective and elaborative faculties—the faculties of productive work in mature manhood; and, finally, the moral and religious sentiments in old age. The first gathers and stores materials; the second vivifies and makes them plastic building materials; the third uses them in actual constructive work—in building the temple of science and philosophy; and the fourth dedicates that temple only to noblest purposes.

Observe here, also, that when each group of faculties culminates and declines, it does not perish, but only becomes subordinate to the next higher dominant group, and the whole psychical organism becomes not only higher and higher in its highest parts, but also more and more complex in its structure and in the interaction of its correlated parts.

Observe, again, the necessity laid upon us by this law—the necessity of continued evolution to the end. Childhood, beautiful childhood, can not remain—it must quickly pass. If, with the decline of its characteristic faculties, the next higher group characteristic of youth do not increase and become dominant, then the glory of life is already past and deterioration begins. Have we not all seen sad examples of this? Youth, glorious youth, must also pass. If the next higher group of reflective and elaborative faculties do not arise and dominate, then progressive deterioration of character commences here—thenceforward the whole nature becomes coarse, as we so often see in young men, or else shrivels and withers, as we so often see in young women. Finally, manhood, strong and self-relying manhood, must also pass. If the moral and religious sentiments have not been slowly growing and gathering strength all along, and do not now assert their dominance over the whole man, then commences the final and saddest decline of all, and old age becomes the pitiable thing we so often see it. But, if the evolution have been normal throughout; if the highest moral and religious nature have been gathering strength through all, and now dominates all, then the psychic evolution rises to the end—then the course of life is like a wave rising and cresting only at the moment of its dissolution, or, like the course of the sun, if not brightest at least most glorious in its setting. And thus—may we not hope?—the glories of the close of a well-spent life become the pledge and harbinger of an eternal to-morrow?

We have thus far illustrated the three laws of succession of organic forms by ontogeny, because this is the type of evolution; but they may be illustrated also by other forms of evolution. Next to the development of the individual, undoubtedly the progress of society furnishes the best illustration of these laws.

Commencing with a condition in which each individual performs all necessary social functions, but very imperfectly; in which each individual is his own shoemaker and tailor, and house-builder and farmer, and therefore all persons are socially alike; as society advances, the constituent members begin to diverge, some taking on one social function and some another, until in the highest stages of social organization this diversification or division and subdivision of labor reaches its highest point, and each member of the aggregate can do perfectly but one thing. Thus, the social organism becomes more and more strongly bound together by mutual dependence, and separation becomes mutilation. I do not mean to say that this extreme is desirable, but only that an approach to this is a natural law of social development. Is not this the law of differentiation?

So also progress is here, as in other forms of evolution—a progress of the whole, but not necessarily of every part. Some members of the social aggregate advance upward to the dignity of statesmen, philosophers, and poets; some advance downward to the position of scavengers and sewer-cleansers.10 But the highest members are progressively higher, and the whole aggregate is progressively grander and more complex in structure and functions.

So, again, the law of cyclical movement is equally conspicuous here. Society everywhere advances, not uniformly, but by successive waves, each higher than the last; each urged by a new and higher social force, and embodying a new and higher phase of civilization. Again: as each phase declines, its characteristic social force is not lost, but becomes incorporated into the next higher phase as a subordinate principle, and thus the social organism as a whole becomes not only higher and higher, but also more and more complex in the mutual relations of its interacting social forces.

Let us not be misunderstood, however. There is undoubtedly in social evolution something more and higher than we have described, but which does not concern us here, except to guard against misconstruction. There is in society a voluntary progress wholly different from the evolution we have been describing. In true or material evolution natural law works for the betterment of the whole utterly regardless of the elevation of the individual, and the individual contributes to the advance of the whole quite unconsciously while striving only for his own betterment. This unconscious evolution by natural law inherited from the animal kingdom is conspicuous enough in society, especially in its early stages, but we would make a great mistake if we imagined, as some do, that this is all. Besides the unconscious evolution by natural laws, inherited from below, there is a higher evolution, inherited from above, indissolubly connected with man’s spiritual nature—a conscious, voluntary striving of the best members of the social aggregate for the betterment of the whole—a conscious, voluntary striving both of the individual and of society toward a recognized ideal. In the one kind of evolution the fittest are those most in harmony with the environment, and which therefore always survive; in the other, the fittest are those most in harmony with the ideal, and which often do not survive. The laws of this free voluntary progress are little understood. They are of supreme importance, but do not specially concern us here. We will speak of it again in another chapter.

The three laws above mentioned might be illustrated equally well by all other forms of evolution. We have selected only those which are most familiar. They may, therefore, be truly called the laws of evolution. We have shown that they are the laws of succession of organic forms.

III. Change by Means of Resident Forces.—Thus far in our argument I suppose that most well-informed men will raise no objection. It will be admitted, I think, even by those most bitterly opposed to the theory of evolution, that there has been throughout the whole geological history of the earth an onward movement of the organic kingdom to higher and higher levels. It will be admitted, also, that there is a grand and most significant resemblance between the course of development of the organic kingdom and the course of embryonic development—between the laws of succession of organic forms and the laws of ontogenic evolution. But there is another essential element in ontogenic evolution. It is that the forces or causes of evolution are natural; that they reside in the thing developing and in the reacting environment. This we know is true of embryonic development; is it true also of the geologic succession of organic forms? It is true of ontogeny; is it true also of phylogeny? If not, then only by a metaphor can we call the process of change in the organic kingdom throughout geological history an evolution. This is the point of discussion, and not only of discussion, but, alas! of heated and even angry dispute. The field of discussion is thus narrowed to this third point only.

Before stating the two opposite views of the cause of evolution, it is necessary to remind the reader that when the evolutionist speaks of the forces that determine progressive changes in organic forms as resident or inherent, all that he means, or ought to mean, is that they are resident in the same sense as all natural forces are resident; in the same sense that the vital forces of the embryo are resident in the embryo, or that the forces of the development of the solar system according to the nebular or any other cosmogonic hypotheses are resident in that system. In other words, they mean only that they are natural, not supernatural. This does not, of course, touch that deeper, that deepest of all questions, viz., the essential nature and origin of natural forces; how far they are independent and self-existent, and how far they are only modes of divine energy. This is a question of philosophy, not of science. This question is briefly discussed in another place (Part III, Chap. III); it does not immediately concern us here.

The Two Views briefly Contrasted.—As already stated, all will admit a grand resemblance between the stages of embryonic development and those of the development of the organic kingdom. This was first brought out clearly by Louis Agassiz, and is, in fact, the greatest result of his life-work. All admit, also, that the embryonic development is a natural process. Is the development of the organic kingdom also a natural process? All biologists of the present day contend that it is; all the old-school naturalists, with Agassiz at their head, and all anti-evolutionists of every school, contend that it is not. We take Agassiz as the type of this school, because he has most fully elaborated and most distinctly formulated this view. As formulated by him, it has stood in the minds of many as an alternative and substitute for evolution.

According to the evolutionists, all organic forms, whether species, genera, families, orders, classes, etc., are variable, and, if external conditions favor, these variations accumulate in one direction and gradually produce new forms, the intermediate links being usually destroyed or dying out. According to Agassiz, the higher groups, such as genera, families, orders, etc., are indeed variable by the introduction of new species, but species are the ultimate elements of classification, and, like the ultimate elements of chemistry, are unchangeable; and, therefore, the speculations of the evolutionist concerning the transmutation of species are as vain as were the speculations of the alchemists concerning the transmutation of metals—that the origin of man, for example, from any lower species is as impossible as the origin of gold from any baser metal. Both sides admit frequent change of species during geological history, but one regards the change as a change by gradual transmutation of one species into another through successive generations and by natural process, the other as change by substitution of one species for another by direct supernatural creative act. Both admit the gradual development of the organic kingdom as a whole through stages similar to those of embryonic development; but the one regards the whole process as natural, and therefore strictly comparable to embryonic development, the other as requiring frequent special interference of creative energy, and therefore comparable rather to the development of a building under the hand and according to the preconceived plan of an architect—a plan, in this case, conceived in eternity and carried out consistently through infinite time. It is seen that the essential point of difference is this: The one asserts the variability of species (if conditions favor, and time enough is given) without limit; the other asserts the permanency of specific forms, or their variability only within narrow limits. The one asserts the origin of species by “descent with modifications”; the other, the origin of species by “special act of creation.” The one asserts the law of continuity (i.e., that each stage is the natural outcome of the immediately preceding stage) in this, as in every other department of Nature; the other asserts that the law of continuity (i.e., of cause and effect) does not hold in this department; that the links of the chain of changes are discontinuous, the connection between them being intellectual, not physical.

So much for sharp contrasting characterization of the two views, necessary for clear understanding of much that follows. We will have to give them more fully hereafter when we take up the evidences of evolution in Part II.

Evolution: Its nature, its evidence, and its relation to religious thought

Подняться наверх