Читать книгу Statistical Analysis with Excel For Dummies - Joseph Schmuller - Страница 18

Null and alternative hypotheses

Оглавление

Consider once again the coin tossing study I mention in the preceding section. The sample data are the results from the 100 tosses. Before tossing the coin, you might start with the hypothesis that the coin is a fair one so that you expect an equal number of heads and tails. This starting point is called the null hypothesis. The statistical notation for the null hypothesis is H0. According to this hypothesis, any heads-tails split in the data is consistent with a fair coin. Think of it as the idea that nothing in the results of the study is out of the ordinary.

An alternative hypothesis is possible: The coin isn’t a fair one, and it's loaded to produce an unequal number of heads and tails. This hypothesis says that any heads-tails split is consistent with an unfair coin. The alternative hypothesis is called, believe it or not, the alternative hypothesis. The statistical notation for the alternative hypothesis is H1.

With the hypotheses in place, toss the coin 100 times and note the number of heads and tails. If the results are something like 90 heads and 10 tails, it's a good idea to reject H0. If the results are around 50 heads and 50 tails, don't reject H0. Similar ideas apply to the reading speed example I give earlier, in the section “Samples and populations.” One sample of children receives reading instruction under a new method designed to increase reading speed, and the other learns via a traditional method. Measure the children's reading speeds before and after instruction and tabulate the improvement for each child. The null hypothesis, H0, is that one method isn't different from the other. If the improvements are greater with the new method than with the traditional method — so much greater that it's unlikely that the methods aren't different from one another — reject H0. If they're not greater, don't reject H0.

Notice that I did not say “accept H0.” The way the logic works, you never accept a hypothesis. You either reject H0 or don't reject H0.

Here’s a real-world example to help you understand this idea. Whenever a defendant goes on trial, that person is presumed innocent until proven guilty. Think of innocent as H0. The prosecutor’s job is to convince the jury to reject H0. If the jurors reject, the verdict is guilty. If they don’t reject, the verdict is not guilty. The verdict is never innocent. That would be like accepting H0.

Back to the coin tossing example. Remember I said “around 50 heads and 50 tails” is what you could expect from 100 tosses of a fair coin. What does around mean? Also, I said if it’s 90-10, reject H0. What about 85-15? 80-20? 70-30? Exactly how much different from 50-50 does the split have to be for you to reject H0? In the reading speed example, how much greater does the improvement have to be to reject H0?

I don't answer these questions now. Statisticians have formulated decision rules for situations like this, and you explore those rules throughout the book.

Statistical Analysis with Excel For Dummies

Подняться наверх