Читать книгу Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик - - Страница 5

Метрики качества модели для задач классификации
Метрика Accuracy (Точность)

Оглавление

Метрика Accuracy (Точность) является одной из наиболее базовых и понятных метрик для оценки качества работы алгоритма классификации. Она измеряет долю правильно классифицированных объектов относительно общего числа объектов в наборе данных.

Метрика Accuracy рассчитывается следующим образом:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

где:

TP (True Positives) – количество правильно классифицированных положительных объектов;

TN (True Negatives) – количество правильно классифицированных отрицательных объектов;

FP (False Positives) – количество неправильно классифицированных положительных объектов (ложные срабатывания);

FN (False Negatives) – количество неправильно классифицированных отрицательных объектов (пропущенные срабатывания).

Accuracy принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение Accuracy к 1 (или 100%), тем лучше работает алгоритм классификации.

Однако, стоит отметить, что метрика Accuracy не всегда является оптимальным выбором для оценки качества классификации, особенно если в наборе данных есть сильный дисбаланс классов. В таких случаях использование других метрик, таких как Precision, Recall или F1-score, может быть более информативным и адекватным.

Пример № 1:

Пусть у нас есть 100 пациентов, из которых 90 здоровы, и 10 больны. Модель правильно классифицирует всех 90 здоровых пациентов и 10 больных пациентов. В этом случае:

TP (True Positives) = 10 (правильно классифицированные больные пациенты)

TN (True Negatives) = 90 (правильно классифицированные здоровые пациенты)

FP (False Positives) = 0 (нет ошибок при классификации здоровых пациентов)

FN (False Negatives) = 0 (нет ошибок при классификации больных пациентов)

Теперь рассчитаем Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN) = (10 + 90) / (10 + 90 + 0 + 0) = 100 / 100 = 1.0 или 100%

В данном примере точность модели составляет 100%.

Пример № 2:

В задаче классификации картинок с котами и собаками у нас есть 1000 картинок, и модель правильно классифицировала 900 из них. Допустим, 500 картинок изображают котов, а другие 500 – собак. Пусть модель правильно классифицировала 450 картинок с котами и 450 картинок с собаками. В этом случае:

TP (True Positives) = 450 (правильно классифицированные картинки с котами)

TN (True Negatives) = 450 (правильно классифицированные картинки с собаками)

FP (False Positives) = 50 (картинки с собаками, классифицированные как коты)

FN (False Negatives) = 50 (картинки с котами, классифицированные как собаки)

Теперь рассчитаем Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN) = (450 + 450) / (450 + 450 + 50 + 50) = 900 / 1000 = 0.9 или 90%

В данном примере точность модели составляет 90%.

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик

Подняться наверх