Читать книгу Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик - - Страница 7

Метрики качества модели для задач классификации
Метрика Recall (Полнота)

Оглавление

Метрика Recall (Полнота) – это одна из метрик качества работы алгоритма классификации, которая показывает, какую долю объектов положительного класса модель смогла правильно классифицировать. Recall фокусируется на правильно классифицированных положительных объектах и пропущенных срабатываниях (ложноотрицательные результаты).

Метрика Recall рассчитывается следующим образом:

Recall = TP / (TP + FN)

где:

TP (True Positives) – количество правильно классифицированных положительных объектов;

FN (False Negatives) – количество неправильно классифицированных положительных объектов (пропущенные срабатывания).

Recall принимает значения в диапазоне от 0 до 1 (или от 0% до 100%). Чем ближе значение Recall к 1 (или 100%), тем лучше модель справляется с задачей распознавания положительного класса.

Важно отметить, что метрика Recall не учитывает ложные срабатывания (False Positives). В некоторых случаях, когда ложные срабатывания могут иметь серьезные последствия, например, в задачах определения спам-писем, лучше использовать другие метрики, такие как Precision (точность) или F1-score, которые учитывают и ошибки первого, и второго рода.


Пример № 1:

Пример № 1: В задаче классификации писем на спам и не спам, модель должна максимизировать количество обнаруженных спам-писем. Если модель правильно определила 80 из 100 спам-писем, то полнота модели для класса "спам" будет 80%.

Давайте рассмотрим пошаговое решение для метрики Recall (Полнота) на примере № 1:

Определите класс, для которого вы хотите рассчитать полноту. В данном примере это класс "спам".

Разделите все примеры на 4 категории: True Positive (TP), False Positive (FP), True Negative (TN) и False Negative (FN). В данном примере это:

TP: модель правильно определила спам-письмо как спам (80 писем).

FP: модель неправильно определила не спам-письмо как спам (20 писем).

FN: модель неправильно определила спам-письмо как не спам (20 писем).

Рассчитайте полноту как отношение TP к общему числу положительных примеров (TP + FN):

Recall = TP / (TP + FN) = 80 / (80 + 20) = 0.8 = 80%

Таким образом, в данном примере модель правильно определила 80 из 100 спам-писем, что соответствует полноте в 80%.

Пример № 2: Представьте, что вы работаете аналитиком в интернет-магазине, который хочет улучшить свой алгоритм рекомендаций товаров пользователям. Вы хотите проверить, насколько хорошо работает текущий алгоритм и решаете посчитать метрику полноты для одной из категорий товаров – "электроника".

Для этого вы берете случайную выборку из 200 пользователей, которые просмотрели товары в категории "электроника" на вашем сайте за последний месяц. После того, как вы применили алгоритм рекомендаций, вы получили следующие результаты:

Из 200 пользователей 120 купили хотя бы один рекомендованный товар в категории "электроника" (TP).

Из 200 пользователей 80 не купили ни одного рекомендованного товара в категории "электроника" (FN).

Рассчитайте метрику полноты (recall) для категории "электроника".

Решение:

TP = 120 (пользователи, которые купили хотя бы один рекомендованный товар в категории "электроника") FN = 80 (пользователи, которые не купили ни одного рекомендованного товара в категории "электроника")

Recall = TP / (TP + FN) = 120 / (120 + 80) = 0.6 = 60%

Метрика полноты для категории "электроника" составляет 60%. Это означает, что ваш текущий алгоритм рекомендаций смог правильно найти 60% всех пользователей, которые купили товары в этой категории за последний месяц. Вам следует анализировать результаты и работать над улучшением алгоритма, чтобы повысить метрику полноты и увеличить долю пользователей, которым будут рекомендованы интересные товары в категории "электроника".

Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик

Подняться наверх