Читать книгу Базовая оценка минерализации. Ресурсный геолог - - Страница 10
ГЛАВА 1. СОЗДАНИЕ И ОБРАБОТКА РУДНОЙ ВЫБОРКИ
Общий статистический анализ одной величины
Среднее арифметическое
ОглавлениеГенеральная совокупность в подавляющем большинстве случаев недостижима. Вы в своей работе будете всегда иметь дело с выборкой. У выборки, как и у генеральной совокупности, есть свои характеристики. В том случае, если выборка очень небольшая – например, 5-7-10 значений, вы можете видеть ее всю целиком, и никаких дополнительных характеристик выборки вам не нужно. Однако традиционно в геологии (и моделировании) вы будете иметь дело с выборками объемом в десятки, сотни и тысячи значений. Впрочем, и выборки в миллионы значений также не являются сугубо экзотичными. Поскольку физически невозможно держать эту выборку «в поле зрения», возникает необходимость каким-либо образом охарактеризовать ее относительно небольшим количеством величин, позволяющими получить представление о выборке без просмотра ее целиком.
Первое, что логично напрашивается – это минимальное и максимальное значения, а также размах. Если с минимумом и максимумом все понятно, то размах – это разница между максимумом и минимумом. То есть размах – это диапазон значений, полученных для данной выборки.
Следующая характеристика выборки – это выборочное среднее. Зачастую слово «выборочное» опускают и говорят просто о «среднем». Вообще говоря, существует довольно большое количество средних, однако чаще всего при упоминании «среднего» имеют в виду среднее арифметическое. Среднее (арифметическое) – это величина, которая рассчитывается по формуле, хорошо знакомой еще из школьного курса.
Формула расчета среднего
Например, среднее из 4, 10 и 19 равняется 11. То есть среднее – величина, промежуточная для реальных значений. Если рассматривать числа как точки на числовой прямой, то среднее – это точка «посередине» точек, соответствующих выборочным данным.
Среднее обладает некоторыми свойствами, также позволяющими лучше понять его смысл:
– если средней величиной заменить все значения выборки, то сумма значений выборки не изменится;
– если среднее значение вычесть из каждого значения выборки, то сумма этих разностей будет равна 0.
Необходимо отметить, что среднее (арифметическое) дает неплохое представление о выборке «симметричной», т. е. такой, в которой высоких и низких значений «примерно поровну». В том же случае, когда явно преобладают высокие или низкие значения, среднее дает смещенную оценку. Также на оценку среднего серьезное влияние оказывают значения, резко выделяющиеся из общей массы (причем неважно – в большую или меньшую сторону). В качестве примера можно рассмотреть коллектив небольшой организации, в которой 20 человек получают по 30 т. р., а генеральный директор – 2 млн. р. Очевидно, что среднее, равное для описанного случая, ~695 т. р., вряд ли корректно отражает ситуацию с уровнем доходов сотрудников организации – причем это справедливо как в отношении рядовых сотрудников, так и в отношении директора. Ну или можно рассмотреть известную шутку о том, что все посетители бара, куда заходит Билл Гейтс, мгновенно в среднем становятся миллионерами (правда, счастье длится ровно до того момента, пока этот уважаемый человек не покинет бар). Вопрос о методах выявления и компенсации аномальных значений в выборке – не самый простой и будет относительно подробно рассмотрен в главе, посвященной урезке ураганных содержаний.
Кроме фактора симметричности и наличия/отсутствия аномальных значений, на оценку среднего может повлиять и разница в других свойствах предметов (явлений), которые приводят к смещению оценки среднего. Одним из подобных факторов является свойство, которое принято называть весом.
Представим себе ситуацию смешивания двух объемов руды: одна смешиваемая руда характеризуется содержанием золота (почему бы и не золота?) 5 г/т, вторая – 10 г/т. Обычное среднее арифметическое, очевидно, в данном случае составит 7.5 г/т. То есть, если мы очень хорошо перемешаем рудный материал, то ожидаем увидеть в получившейся смеси эти самые 7.5 г/т. Но что будет, если масса «пятиграммовой» руды составит 10 т, а «десятиграммовой» – 1 т? Очевидно, что в результате смешивания мы получим 11 т руды. При этом из первой порции «придет» 50 г драгоценного металла, а из второй – 10 г. То есть в смеси всего будет содержаться 60 г. И среднее в этом случае составит 60/11 ≈ 5.45 г/т. Очевидно, цифра несколько отличается от ранее полученных 7.5 г/т (что, безусловно, обидно, зато позволило не впасть в ошибку при ожидании).
Учет подобных факторов при вычислении среднего называется взвешиванием, а среднее – средневзвешенным. Взвешивание используется при вычислении характеристик выборки довольно широко. Например, при композитировании данных опробования вдоль по скважинам (в этом случае используется взвешивание на длину проб). Или вычислении среднего по резко неравномерной сети (выполняется взвешивание на вес декластеризации). Вопросы способов вычисления весов рассматриваются в главах, посвященных декластеризации и композированию (впрочем, второе, по сути, является частным случаем первого).