Читать книгу Концепции и технологии цифровизации машиностроительного предприятия. Учебное пособие - - Страница 5

Глава 1. Концепции цифровизации производственного предприятия
1.2 Модель умного производства от MESA

Оглавление

В конце 2021 г. ассоциация MESA анонсировала новую модель умного производства (Smart Manufacturing), которая и ставит целью разобраться со всеми модными концепциями.

MESA традиционно занимается системами класса MES, а также продвигает широко известный стандарт ISA95, позволяющий реализовать взаимодействие между корпоративными информационными системами (ERP) и системами управления производством (MES). Обычно модель ISA95 представляют в виде пирамиды: системы дискретной автоматизации (датчики, контроллеры, приводы, SCADA-системы и т.д.) занимают уровни 1 и 2, MES – уровень 3, ERP и PLM – уровень 4.

Новая модель Smart Manufacturing выходит за рамки технологий и MES, включая цепочку поставок, обеспечение качества, инжиниринг, аналитику, исследования и разработки и многие другие области, а не только производство. В настоящее время синергия новых технологий является одним из ключевых факторов для развития умного производства. Однако мало применить новые технологии, необходимы организационные мероприятия, которые усилят эффект от современных достижений.

Модель MESA для умного производства объединяет три взаимосвязанные категории. На рис. 1.3 они показаны в виде трех барабанов, которые взаимодействуют между собой в процессах перехода от бизнес-целей к результатам производства [2]. Первая категория – это жизненные циклы (Lifecycles). Причем речь не только о жизненном цикле изделия (ЖЦИ). Жизненные циклы распространяются на все бизнес-процессы и потоки создания ценности, необходимые для производства. Концепция Smart Manufacturing призвана повысить связность и прозрачность во всех измерениях предприятия, влияя на жизненные циклы всех объектов и субъектов производственного процесса.


Рис. 1.3. Модель MESA для умного производства (вариант на русском языке дан по [2])


Новая модель рассматривает жизненные циклы: изделий, цепочки поставок, производства, производственных активов, «заказ-деньги», персонал.

Любая производственная среда включает составляющие производственного процесса, которые взаимосвязаны между собой. По этой причине модель также включает набор потоков информации между объектами, жизненные циклы которых рассматриваются (Cross-Cycle Threads), а именно: качество, соответствие нормативам, моделирование / симуляция, аналитика, цифровой двойник / поток, электроэнергия, безопасность.

Потоки информации помогают связать воедино функции различных производственных процессов и объектов для достижения конкретных целей, таких как предписанные уровни качества, соответствие нормативным требованиям или снижение энергопотребления. Некоторые потоки информации имеют глобальные цели, такие как задачи аналитики, безопасности и т. д. Концепция гарантирует, что все участвующие в производственном процессе объекты и субъекты согласованно, а не независимо.

Умное производство также обеспечивается современными технологиями. Новая модель MESA учитывает эти технологии: Industrial Internet of Things (IIoT), большие данные, технологии искусственного интеллекта, беспроводные технологии передачи данных, блокчейн, облачные технологии, аддитивные технологии, роботизация, виртуальная и дополненная реальность.

Жизненные циклы

Жизненным циклом изделия (ЖЦИ) обычно занимается PLM система. Но как показывает практика в тени остается собственно производство. И в большинстве случаев связка PLM – MES не работает. Новая модель призвана исправить ситуацию.

Добавление жизненного цикла (ЖЦ) производства позволит правильно организовать взаимодействие этих циклов. PLM – это система (или набор систем) уровня предприятия или даже холдинга. MES – это система уровня цеха или участка, то есть в общем случае на предприятии будет несколько MES, и даже если они созданы на одной платформе, то все равно это разные системы. В такой постановке публикации практически отсутствуют. Для сложных изделий не все компоненты изготавливает головное предприятие. Довольно много компонентов изготавливают поставщики. Работа с поставщиками – это чаще всего область ERP-систем. Иногда говорят и о специализированных SCM системах, но на практике они обычно выступают подсистемой ERP системы. Однако, и ERP, и SCM не рассматривают технический уровень производства поставщиков. Другими словами, жизненные циклы (своего) производства и жизненные циклы цепочки поставок должны быть связаны с ЖЦИ.

Такое взаимодействие наиболее полно регламентировано в стандарте поставщиков автокомпонентов IATF 16949. Стандарт предписывает сертификацию производства поставщика в свете возможности изготовления компонентов надлежащего качества, в заданные сроки и в требуемых объемах. Для поддержки этого стандарта даже появились специализированные системы менеджмента качества – QMS (подробнее смотри главу …). Фактически в QMS есть элементы и ЖЦИ, и ЖЦ производства и ЖЦ цепочки поставок. Но это только в одной отрасли. Есть попытки распространить опыт автопрома на авиационную промышленность (стандарты серии AS/EN9100) и на производителей железнодорожной техники (ISO TC 22163), но пока в меньшей степени.

Для взаимодействия разных жизненных циклов в новой модели есть отдельная категория – межцикловые потоки (рисунок). Рассмотрим их подробнее.

Межцикловые потоки информации

Отметим, что темы «качество» (Quality) и «соответствие нормативам» (Compliance) в новой модели MESA даны первыми. Предполагаем, что по степени важности. Это инструменты взаимодействия разных ЖЦ, причем уже в значительной степени формализованных в стандартах менеджмента качества и в QMS.

Далее идут «моделирование/симуляция» (Modeling / Simulation) и «цифровые двойники/цифровые потоки» (Digital Twin / Thread).

В настоящее время больше известны цифровые двойники изделия. Обычно постановка вопроса направлена на использование CAE систем с целью замены реальных испытаний виртуальными. Тема актуальная, но не затрагивает производство. Также не рассматриваем цифровые двойники для стадии эксплуатации изделий. Сконцентрируемся на производстве.

Цифровым двойникам производства посвящены работы Фролова В. Б., например [3]: «На стадии управления жизненным циклом изделия (PLM) создается так называемый цифровой двойник изделия, а на стадии организации производства и изготовления формируется цифровая модель материальных потоков, представляющая собой цифровой двойник производственной системы». И реализуется это обычно с помощью MES. Производственная система машиностроительного предприятия на этапе ее эксплуатации подвержена функциональным и структурным изменениям из-за технического перевооружения, изменения номенклатуры и программы выпуска. В результате этих изменений создаются новые конфигурации производственной системы. Цифрой двойник производственной системы отражает ее конкретную конфигурацию. Он позволяет проводить необходимые расчеты для принятия управленческих решений, отображать в режиме реального времени производственные процессы, протекающие в производственной системе, проводить различные эксперименты типа «что, если» путем математического моделирования производственных процессов.

Однако и здесь нет однозначного ответа на вопрос: в какой системе осуществляется контроль качества и как это связано с управлением качеством. Проведение контроля с фиксацией прослеживаемости – одна из функций MES. Работа с браком – тоже задача MES (но без долговременных мероприятий). Поиск причины брака может занимать длительное время и требует анализа, командной работы и т. д. Это выполняется в QMS. В качестве долговременных мероприятий могут быть запросы в PLM систему на изменение конструкции или технологии для снижения вероятности отказов. QMS – более глобальная система, по сравнению с MES. Она может объединять несколько площадок, на которых разные системы класса MES или их нет вообще. Если какие-то детали можно производить на разных площадках, то анализ рисков и планирование контроля в общем случае могут сильно различаться. Такой анализ может помочь в принятии решений о переносе производства на ту или иную производственную площадку и т. д.

Производственная трансформация

С цифровыми двойниками тесно связано и понятие цифровой трансформации. Нас интересует его применение для машиностроения, называемое производственной трансформацией. Вот определение от аналитической компании LNS [4] «Производственная трансформация – это проактивный и скоординированный подход к использованию цифровых технологий для постепенного улучшения в производственных операциях».

Эксперты LNS выделяют четыре стадии в области производственной трансформации: инкубационная (Incubate), доказательная (Prove), масштабирование (Scale), внедрение (Embed).

На первой стадии практически каждое промышленное предприятие, которое инициирует трансформацию, делает это, формируя программу промышленной трансформации. Часто это выполняется силами внешних консультантов. Целью является тестирование технологии на пилотных проектах. На второй стадии программы надо перейти от презентаций к фактическому успеху внедрения (даже если он небольшой). Нужны быстрые решения и они, как правило, развертываются на самых технически продвинутых заводах, которые можно назвать маяками.

Третья стадия (scale) программы выходит за рамки технической конвергенции операционных технологий (OT) и информационных технологий (IT) и переходят к организационной конвергенции. Это первый этап, когда промышленные организации реально начинают свою трансформацию. Глубокое и широкое взаимодействие с оперативным персоналом становится центральным элементом программы. Нужны инвестиции в «инфраструктуру» (сбор данных, обработка, контекстуализация и т. д.) без прямой и немедленной окупаемости. И на четвертой стадии проходит собственно внедрение. Здесь пересматривается сама программа трансформации и упор делается на пересмотре стандартных операционных процедур по всей компании.

В исследовании отмечается, что положительное влияние на финансовые показатели компании в виде увеличения выручки, снижения себестоимости реализованных товаров и увеличения операционной маржи – реализуются на последних двух этапах трансформации. Между стадиями 2 и 3 требуется кардинальное перестроение бизнес-процессов. Производители должны перестроить свои команды, бизнес-процессы, стратегии и методологии. Фактически речь идет о реинжиниринге бизнес-процессов. Этот очень важный инструмент призван настроить межцикловые потоки данных в рассматриваемой модели.

Реинжиниринг процессов необходим и для использования новых технологий в существующем производстве, через него и происходит связывание всех трех категорий новой модели умного производства.

Концепции и технологии цифровизации машиностроительного предприятия. Учебное пособие

Подняться наверх