Читать книгу Биологические концепции современного естествознания - Лариса Баймакова - Страница 8

1. ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ ЖИЗНИ
1.2. ТЕОРИИ ВОЗНИКНОВЕНИЯ ЖИЗНИ
1.2.5. Биохимическая эволюция

Оглавление

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5–5 млрд лет.

По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000-8000 градусов по Цельсию). По мере того как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовывали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершенно не такой, как теперь. Легкие газы – водород, гелий, азот, кислород и аргон – уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удерживать. Однако другие соединения, содержащие (среди прочих) эти элементы должны были удерживаться: к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор, пока температура Земли не упала ниже ста градусов по Цельсию, вся вода, вероятно, находилась в парообразном состоянии. Атмосфера была, по-видимому, «восстановительной», о чем свидетельствует наличие в самых древних породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы и в окисленной форме, например, трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, условием для возникновения жизни; лабораторные опыты показывают, что, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом.

В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас. Исходя из теоретических соображений, он полагал, что органические вещества, возможно, углеводороды, могли создаваться в океане из белее простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), попадавшая на Землю до того, как образовался озоновый слой, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океане простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот «первичный бульон», в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. схожую мысль высказал Дарвин: «Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать имеются и в настоящее время, но если (ох, какое это большое «если») представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т. п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа».

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке, снабженной источником энергии (электрические разряды), ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка, в сходном эксперименте, синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной атмосфере в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, проведенные с использованием установки Миллера, в которую, однако, поместили смесь СО2 и Н2О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина-Холдейна завоевала широкое признание, но она оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращениях неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул, они способны к образованию коллоидных гидрофильных комплексов – притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспензированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды – процесс, называемый коацервацией (от лат. – сгусток, куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава «бульона» в разных местах вело к различиям в химическом составе коацерватов и поставляло сырье для «биохимического естественного отбора».

Предполагается, что входящие в состав коацерватов вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводы), что приводило к образованию примитивной клеточной мембраны, обеспечивающей коацерватам стабильность. В результате включения в коацерват предсуществующей молекулы, способности к самовоспроизведению и внутренней перестройке покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая продолжительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного «бульона».

Хотя эту гипотезу происхождения признают очень многие ученые, астроном Фрэд Хойл недавно высказал мнение, что мысль о возникновении живого в результате описанных выше случайных взаимоотношений молекул «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над местной свалкой, может привести к сборке Боинга-747». Самое трудное для этой теории – объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока малоубедительны.

Существенным недостатком старых гипотез о возникновении жизни на Земле, и в частности гипотезы академика А. И. Опарина, является то, что они не опираются на современную молекулярную биологию. Впрочем, это вполне естественно, так как механизм передачи наследственных признаков, и в частности роль ДНК, стал в известной степени ясным только сравнительно недавно.

Как произошел качественный скачок от неживого к живому, гипотеза А. И. Опарина совершенно не объясняет. Только привлечение основных представлений современной молекулярной биологии, а также кибернетики, может помочь решению этой важнейшей, основной проблемы. Некоторые пути ее решения уже намечаются. Важным вопросом является возможность синтеза ДНК в естественных условиях «первобытной» Земли.

Итак, центральной проблемой происхождения жизни на земле является реконструкция эволюции механизма наследственности. Жизнь возникла только тогда, когда начал действовать механизм репликации. Любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений – это еще не живой организм.

В то же время в XX в. получает мощное развитие и хорошее эмпирическое и теоретическое обоснование возрожденная на новом уровне, в новой форме доктрина о спонтанном возникновении жизни из неживой материи, причем существуют многочисленные варианты абиогенеза. Эта химическая концепция происхождения жизни не может не считаться с тем фундаментальным положением, что генезис жизни представляет собой закономерный этап в общем развитии Вселенной. Круг вопросов, связанных с идеей о космическом характере жизни получил серьезное обоснование в трудах В. И. Вернадского и занимает одно из центральных мест в современной науке. В своих «Философских мыслях натуралиста» наш соотечественник подчеркивает, что если в самых различных философских системах вопрос о космической природе жизни ставился и ставится многократно, то сейчас он должен быть поставлен и в науке. И действительно, многие научные дисциплины: космология, астрофизика, космохимия, планетология, биофизика и другие – дают основания для вывода о том, что жизнь представляет собой результат естественной эволюции Вселенной, что живые структуры многочисленными нитями связаны с ближайшим и дальним космосом, что нет необходимости прибегать к помощи сверхъестественного разума в объяснении происхождения жизни.

Главные этапы возникновения и развития жизни, а также приблизительные диапазоны времени этих процессов представлены в таблице 2.


Таблица 2

Основные этапы возникновения и развития жизни

Резюме

Вопрос о происхождении жизни всегда интерпретируется на основе определенных концептуальных представлений, но до середины XX в. в арсенале биологии таких концепций не было. В новейшей биологии нет альтернативы молекулярно-динамическому подходу, позволяющему интерпретировать происхождение жизни наиболее содержательным образом. При этом необходимо учитывать также достижения небиологических наук, в том числе физики, космологии, химии, геологии.

Сложность проблемы происхождения жизни состоит в том, что ее нельзя изучать в естественных условиях. В настоящее время не существует таких условий, как несколько миллиардов лет назад при возникновении жизни. Вместе с тем на современном уровне развития науки уже возможен строго научный подход к изучению этой проблемы путем создания в искусственной (лабораторной) обстановке условий, отвечающих соответствующему этапу развития планеты.

Вопросы для самоконтроля

1. Что отличает живые организмы от тел неживой природы?

2. Какие теории, касающиеся возникновения жизни на Земле вам известны, в чем их суть?

3. Изложите гипотезу академиков А.И. Опарина-Холдейна о происхождении жизни.

4. Почему невозможно самозарождение жизни, т. е. возникновение ее из неорганической материи, в современных условиях?

Биологические концепции современного естествознания

Подняться наверх