Читать книгу Na-ion Batteries - Laure Monconduit - Страница 41
1.7. References
ОглавлениеAbakumov, A.M., Tsirlin, A.A., Bakaimi, I., Van Tendeloo, G., and Lappas, A. (2014). Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2 polymorphism, redox potentials, and magnetism. Chemistry of Materials, 26(10), 3306–3315.
Adamczyk, E. and Pralong, V. (2017). Na2Mn3O7: A suitable electrode material for Na-ion batteries? Chemistry of Materials, 29(11), 4645–4648.
Ado, K., Tabuchi, M., Kobayashi, H., Kageyama, H., Nakamura, O., Inaba, Y., Kanno, R., Takagi, M., and Takeda, Y. (1997). Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method. Journal of the Electrochemical Society, 144(7), L177–L180.
Amatucci, G.G., Tarascon, J.M., and Klein, L.C. (1996). CoO2, the end member of the LixCoO2 solid solution. Journal of the Electrochemical Society, 143(3), 1114–1123.
Andersson, S. and Wadsley, A.D. (1962). NaXTi4O8, an alkali metal titanium dioxide bronze. Acta Crystallographica, 15(3), 201–206.
Bai, Y., Zhao, L.X., Wu, C., Li, H., Li, Y., and Wu, F. (2016). Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. Acs Applied Materials & Interfaces, 8(4), 2857–2865.
Barpanda, P., Oyama, G., Nishimura, S., Chung, S.C., and Yamada, A. (2014). A 3.8-V earth-abundant sodium battery electrode. Nat. Commun., 5, 4358.
Beck, F.R., Cheng, Y.Q., Bi, Z.H., Feygenson, M., Bridges, C.A., Moorhead-Rosenberg, Z., Manthiram, A., Goodenough, J.B., Paranthaman, M.P., and Manivannan, A. (2014). Neutron diffraction and electrochemical studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 161(6), A961–A967.
Berthelot, R., Carlier, D., and Delmas, C. (2011). Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater, 10(1), 74–80.
Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T., and Janek, J. (2019). There and back again–The journey of LiNiO2 as a cathode active material. Angewandte Chemie-International Edition, 58(31), 10434–10458.
Billaud, J., Clement, R.J., Armstrong, A.R., Canales-Vazquez, J., Rozier, P., Grey, C.P., and Bruce, P.G. (2014). Beta-NaMnO2: A high-performance cathode for sodium-ion batteries. Journal of the American Chemical Society, 136(49), 17243–17248.
Blesa, M.C., Moran, E., Menendez, N., Tornero, J.D., and Torron, C. (1993). Hydrolysis of sodium orthoferrite [alpha-NaFeO2]. Materials Research Bulletin, 28(8), 837–847.
Bo, S.H., Li, X., Toumar, A.J., and Ceder, G. (2016). Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chemistry of Materials, 28(5), 1419–1429.
Braconnier, J.-J., Delmas, C., Fouassier, C., and Hagenmuller, P. (1980). Comportement electrochimique des phases NaxCoO2. Materials Research Bulletin, 15(12), 1797–1804.
Braconnier, J.J., Delmas, C., and Hagenmuller, P. (1982). Etude par désintercalation électrochimique des systèmes NaxCrO2 et NaxNiO2. Materials Research Bulletin, 17(8), 993–1000.
Breger, J., Kang, K., Cabana, J., Ceder, G., and Grey, C.P. (2007). NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. Journal of Materials Chemistry, 17(30), 3167–3174.
Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C. (2011). The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Transactions, 40(36), 9306–9312.
Chang, F.M. and Jansen, M. (1985). Synthesis and crystal-structure of Na2Mn3O7. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 531(12), 177–182.
Chen, C.-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S. (2013). Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA. Journal of Power Sources, 237(0), 52–57.
Chen, X., Wang, Y.C., Wiaderek, K., Sang, X.H., Borkiewicz, O., Chapman, K., Lebeau, J., Lynn, J., and Li, X. (2018). Super charge separation and high voltage phase in NaxMnO2. Adv. Funct. Mater. 28(50), 1805105. https://doi.org/10.1002/adfm.201805105.
Cheng, J.H., Pan, C.J., Lee, J.F., Chen, J.M., Guignard, M., Delmas, C., Carlier, D., and Hwang, B.J. (2014). Simultaneous reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 as evidenced by X-ray absorption spectroscopy during electrochemical sodium intercalation. Chemistry of Materials, 26(2), 1219–1225.
Clement, R., Billaud, J., Armstrong, R., Singh, G., Rojo, T., Bruce, P.G., and Grey, C.P. (2016). Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies. Energy & Environmental Science, 9(10), 3240–3251.
Clement, R.J., Bruce, P.G., and Grey, C.P. (2015). Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of the Electrochemical Society, 162(14), A2589–A2604.
Croguennec, L., Pouillerie, C., Mansour, A.N., and Delmas, C. (2001). Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x <= 0.30). Journal of Materials Chemistry, 11(1), 131–141.
Delmas, C., Braconnier, J.J., Maazaz, A., and Hagenmuller, P. (1982). Soft chemistry in AxMO2 sheet oxides. Revue De Chimie Minerale, 19(4–5), 343–351.
Delmas, C., Fouassier, C., and Hagenmuller, P. (1977). Crystallochemical evolution and physical-properties of some lamellar oxides. Materials Science and Engineering, 31, 297–301.
Delmas, C., Fouassier, C., and Hagenmuller, P. (1980). Structural classification and properties of the layered oxides. Physica B & C, 99(1–4), 81–85.
Deng, J., Luo, W. B., Chou, S. L., Liu, H. K., & Dou, S. X. (2018). Sodium‐Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 8(4), 1701428.
Deng, J.Q., Luo, W.B., Lu, X., Yao, Q.R., Wang, Z.M., Liu, H.K., Zhou, H.Y., and Dou, S.X. (2018). High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 8(5), 1701610.
Didier, C., Guignard, M., Denage, C., Szajwaj, O., Ito, S., Saadoune, I., Darriet, J., and Delmas, C. (2011). Electrochemical Na-deintercalation from NaVO2. Electrochemical and Solid State Letters, 14(5), A75–A78.
Dyer, L.D., Borie, B.S., and Smith, G.P. (1954). Alkali metal nickel oxides of the type MNiO2. Journal of the American Chemical Society, 76(6), 1499–1503.
Eriksson, T.A., Lee, Y.J., Hollingsworth, J., Reimer, J.A., Cairns, E.J., Zhang, X.F., and Doeff, M.A. (2003). Influence of substitution on the structure and electrochemistry of layered manganese oxides. Chemistry of Materials, 15(23), 4456–4463.
Fang, C., Huang, Y.H., Zhang, W.X., Han, J.T., Deng, Z., Cao, Y.L., and Yang, H.X. (2016). Routes to high energy cathodes of sodium-ion batteries. Advanced Energy Materials, 6(5), 18.
Fouassier, C., Delmas, C., and Hagenmuller, P. (1975). Evolution structurale et propriétés physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x‚©Ω 1). Materials Research Bulletin, 10(6), 443–449.
Fouassier, C., Matejka, G., Reau, J.-M., and Hagenmuller, P. (1973). Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium. Journal of Solid State Chemistry, 6(4), 532–537.
Goldsztaub, M.S. (1935). Etude de quelques dérives de l’oxyde ferrique (FeO * OH, FeO2 Na, FeOCl) détermination de leurs structures. Bulletin de la Société Francaise de Minéralogie, 58, 6.
Goodenough, J.B., Mizushima, K., and Takeda, T. (1980). Solid-solution oxides for storage-battery electrodes. Japanese Journal of Applied Physics, 19(3), 305–313.
Hamani, D., Ati, M., Tarascon, J.M., and Rozier, P. (2011). NaxVO2 as possible electrode for Na-ion batteries. Electrochemistry Communications, 13(9), 938–941.
Han, M.H., Gonzalo, E., Casas-Cabanas, M., and Rojo, T. (2014). Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. Journal of Power Sources, 258, 266–271.
Han, M.H., Gonzalo, E., Sharma, N., Del Amo, J.M.L., Armand, M., Avdeev, M., Garitaonandia, J.J.S., and Rojo, T. (2016). High-performance P2-phase Na2/3Mn0.8Fe0.1 Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chemistry of Materials, 28(1), 106–116.
Hinuma, Y., Meng, Y. S., & Ceder, G. (2008). Temperature-concentration phase diagram of P2-NaxCoO2 from first-principles calculations. Physical Review B, 77(22), 224111.
Hoffmann, L. and Hoppe, R. (1977). Alpha- LiFeO2-type of structure. Zeitschrift für anorganische und allgemeine Chemie, 430(3), 115–120.
Hoppe, R., Schepers, B., Rohrborn, H.-J., and Vielhaber, E. (1965). Über Oxoscandate: LiScO2 und NaScO2. Zeitschrift für anorganische und allgemeine Chemie, 339(3–4), 130–143.
Huang, J.T., Furukawa, T., and Aoto, K. (2005). High temperature behavior of Na-Fe oxides in H2O + CO2 atmosphere. Journal of Physics and Chemistry of Solids, 66(2–4), 388–391.
Hwang, J.-Y., Myung, S.-T., Choi, J.U., Yoon, C.S., Yashiro, H., and Sun, Y.-K. (2017a). Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 5(45), 23671–23680.
Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K. (2017b). Sodium-ion batteries: Present and future. Chemical Society Reviews, 46(12), 3529–3614.
Jansen, M. and Hoppe, R. (1972). New oxocobaltates. Naturwissenschaften, 59(5), 215.
Jian, Z.L., Zhao, L., Pan, H.L., Hu, Y.S., Li, H., Chen, W., and Chen, L.Q. (2012). Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 14(1), 86–89.
Kaithwas, C.K. and Kundu, T.K. (2015). Development of high capacity Na0.7(Ni0.4Mn0.4Co0.1Fe0.1)O2 cathode material for sodium ion batteries. IOP Conference Series: Materials Science and Engineering, 75(1), 012008.
Kang, J., Baek, S., Mathew, V., Gim, J., Song, J., Park, H., Chae, E., Rai, A.K., and Kim, J. (2012). High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. Journal of Materials Chemistry, 22(39), 20857–20860.
Kanno, R., Shirane, T., Inaba, Y., and Kawamoto, Y. (1997). Synthesis and electrochemical properties of lithium iron oxides with layer-related structures. Journal of Power Sources, 68(1), 145–152.
Kaufman, J. L., & Van der Ven, A. (2019). NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family. Physical Review Materials, 3(1), 015402.
Kim, D., Lee, E., Slater, M., Lu, W.Q., Rood, S., and Johnson, C.S. (2012a). Layered Na[Ni1/3 Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochemistry Communications, 18, 66–69.
Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., and Kang, K. (2016). Recent progress in electrode materials for sodium-ion batteries. Advanced Energy Materials, 6(19), 1600943.
Kim, S., Ma, X.H., Ong, S.P., and Ceder, G. (2012b). A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation.
Physical Chemistry Chemical Physics, 14(44), 15571–15578.
Komaba, S. (2019). Systematic study on materials for lithium-, sodium-, and potassium-ion batteries. Electrochemistry, 87(6), 312–320.
Komaba, S., Hasegawa, T., Dahbi, M., and Kubota, K. (2015). Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications, 60, 172–175.
Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., and Fujiwara, K. (2011). Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Advanced Functional Materials, 21(20), 3859–3867.
Komaba, S., Nakayama, T., Ogata, A., Shimizu, T., Takei, C., Takada, S., Hokura, A., and Nakai, I. (2009). Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Transactions, 16(42), 43–55.
Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N. (2010). Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications, 12(3), 355–358.
Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., and Nakai, I. (2012). Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorganic Chemistry, 51(11), 6211–6220.
Komaba, S., Yabuuchi, N., Yano, M., and Kuze, S. (2014). Positive electrode active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell. Japan patent application PCT/JP2014/057122
Kubota, K., Asari, T., Yoshida, H., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S. (2016). Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries. Advanced Functional Materials, 26(33), 6047–6059.
Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., and Komaba, S. (2018a). Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec., 18(4), 459–479.
Kubota, K., Ikeuchi, I., Nakayama, T., Takei, C., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S. (2015a). New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. Journal of Physical Chemistry C, 119(1), 166–175.
Kubota, K. and Komaba, S. (2015). Review-practical issues and future perspective for Na-ion batteries. Journal of the Electrochemical Society, 162(14), A2538–A2550.
Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K., and Komaba, S. (2018). Electrochemistry and Solid‐State Chemistry of NaMeO2 (Me= 3d Transition Metals). Advanced Energy Materials, 8(17), 1703415.
Kubota, K., Miyazaki, M., and Komaba, S. (eds) (2015b). Structural and electrochemical studies on NaMnO2 for Na-ion batteries. 228th ECS Meeting, Phoenix, AZ.
Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S. (2014). Layered oxides as positive electrode materials for Na-ion batteries. Mrs Bulletin, 39(5), 416–422.
Kubota, K., Yoda, Y., and Komaba, S. (2017). Origin of enhanced capacity retention of P2-Type Na2/3Ni1/3-xMn2/3CuxO2 for Na-ion batteries. Journal of The Electrochemical Society, 164(12), A2368–A2373.
Kumakura, S., Tahara, Y., Kubota, K., Chihara, K., and Komaba, S. (2016). Sodium and manganese stoichiometry of P2-type Na2/3MnO2. Angewandte Chemie International Edition, 55(41), 12760–12763.
Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F. (2015). The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 54(11), 3431–3448.
Lee, D.H., Xu, J., and Meng, Y.S. (2013). An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Physical Chemistry Chemical Physics, 15(9), 3304–3312.
Lee, E., Brown, D.E., Alp, E.E., Ren, Y., Lu, J., Woo, J.-J., and Johnson, C.S. (2015). New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2. Chemistry of Materials, 27(19), 6755–6764.
Legoff, P., Baffier, N., Bach, S., Pereiraramos, J.P., and Messina, R. (1993). Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process. Solid State Ionics, 61(4), 309–315.
Lei, Y.C., Li, X., Liu, L., and Ceder, G. (2014). Synthesis and stoichiometry of different layered sodium cobalt oxides. Chemistry of Materials, 26(18), 5288–5296.
Li, X., Wang, Y., Wu, D., Liu, L., Bo, S.-H., and Ceder, G. (2016). Jahn–Teller assisted Na diffusion for high performance Na ion batteries. Chemistry of Materials, 28(18), 6575–6583.
Li, X., Wu, D., Zhou, Y.N., Liu, L., Yang, X.Q., and Ceder, G. (2014). O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochemistry Communications, 49, 51–54.
Li, Y., Yang, Z., Xu, S., Mu, L., Gu, L., Hu, Y.S., Li, H., and Chen, L. (2015). Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. (Weinh), 2(6), 1500031.
Li, Y.J., Gao, Y.R., Wang, X.F., Shen, X., Kong, Q.Y., Yu, R.C., Lu, G., Wang, Z.X., and Chen, L.Q. (2018). Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy, 47, 519–526.
Li, Z.-Y., Gao, R., Sun, L., Hu, Z., and Liu, X. (2017). Zr-doped P2-Na0.75Mn0.55Ni0.25 Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochimica Acta, 223, 92–99.
Lim, S.Y., Kim, H., Chung, J., Lee, J.H., Kim, B.G., Choi, J.J., Chung, K.Y., Cho, W., Kim, S.J., Goddard, W.A., Jung, Y., and Choi, J.W. (2014). Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 599–604.
Liu, L., Li, X., Bo, S.-H., Wang, Y., Chen, H., Twu, N., Wu, D., and Ceder, G. (2015). High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Advanced Energy Materials, 5(22), 1500944.
Lu, Z.H. and Dahn, J.R. (2001a). In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. Journal of the Electrochemical Society, 148(11), A1225–A1229.
Lu, Z.H. and Dahn, J.R. (2001b). Intercalation of water in P2, T2 and O2 structure A(z)[COxNi1/3-xMn2/3]O2. Chemistry of Materials, 13(4), 1252–1257.
Ma, C.Z., Alvarado, J., Xu, J., Clement, R.J., Kodur, M., Tong, W., Grey, C.P., and Meng, Y.S. (2017). Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. Journal of the American Chemical Society, 139(13), 4835–4845.
Ma, X.H., Chen, H.L., and Ceder, G. (2011). Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society, 158(12), A1307–A1312.
Maazaz, A. and Delmas, C. (1982). On new phases with formula NaxTiO2. Comptes Rendus De L Académie Des Sciences Série Ii, 295(8), 759–760.
Maazaz, A., Delmas, C., and Hagenmuller, P. (1983). A study of the NaxTiO2 system by electrochemical deintercalation. Journal of Inclusion Phenomena, 1(1), 45–51.
Marcus, Y. (1985). Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed-solvents. 3. Standard potentials of selected electrodes. Pure and Applied Chemistry, 57(8), 1129–1132.
Mariyappan, S., Hemalatha, K., Ramesha, K., Tarascon, J.M., and Prakash, A.S. (2012). Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 24(10), 1846–1853.
Mariyappan, S., Thomas, J., Batuk, D., Pimenta, V., Gopalan, R., and Tarascon, J.-M. (2017). Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chemistry of Materials, 29(14), 5948–5956.
Mariyappan, S., Wang, Q., and Tarascon, J.M. (2018b). Will sodium layered oxides ever be competitive for sodium ion battery applications? Journal of The Electrochemical Society, 165(16), A3714–A3722.
Mariyappan, S., Marchandier, T., Rabuel, F., Iadecola, A., Rousse, G., Morozov, A. V., and Tarascon, J. M. (2020). The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications. Chemistry of Materials, 32(4), 1657–1666.
Martinez De Ilarduya, J., Otaegui, L., López Del Amo, J.M., Armand, M., and Singh, G. (2017). NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery. Journal of Power Sources, 337, 197–203.
Matsumura, T., Sonoyama, N., and Kanno, R. (2003). Synthesis, structure and electrochemical properties of layered material, Li2/3[Mn1/3Fe2/3]O2, with mixed stacking states. Solid State Ionics, 161(1–2), 31–39.
Mendiboure, A., Delmas, C., and Hagenmuller, P. (1985). Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 57(3), 323–331.
Mishra, S.K. and Ceder, G. (1999). Structural stability of lithium manganese oxides. Physical Review B, 59(9), 6120–6130.
Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B. (1980). Lithium cobalt oxide(LixCoO2) (0<x<1): A new cathode material for batteries of high energy density.
Materials Research Bulletin, 15(6), 783–789.
Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.
Monyoncho, E. and Bissessur, R. (2013). Unique properties of alpha-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution. Materials Research Bulletin, 48(7), 2678–2686.
Mortemard De Boisse, B., Carlier, D., Guignard, M., Bourgeois, L., and Delmas, C. (2014). P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process. Inorganic Chemistry, 53(20), 11197–11205.
Mortemard de Boisse, B. M., Liu, G., Ma, J., Nishimura, S. I., Chung, S. C., Kiuchi, H., and Yamada, A. (2016). Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nature communications, 7(1), 1–9
Mortemard de Boisse, B., Nishimura, S. I., Watanabe, E., Lander, L., Tsuchimoto, A., Kikkawa, J., and Yamada, A. (2018). Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7− x [□ 1/7Mn6/7] O2 (□: Mn Vacancy). Advanced Energy Materials, 8(20), 1800409.
Mortemard de Boisse, B. M., Reynaud, M., Ma, J., Kikkawa, J., Nishimura, S. I., Casas-Cabanas, M., and Yamada, A. (2019). Coulombic self-ordering upon charging a largecapacity layered cathode material for rechargeable batteries. Nature Communications, 10(1), 1–7.
Mu, L., Xu, S., Li, Y., Hu, Y.-S., Li, H., Chen, L., and Huang, X. (2015). Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 27(43), 6928–6933.
Mu, L.Q., Hou, Q.P., Yang, Z.Z., Zhang, Y., Rahman, M.M., Kautz, D.J., Sun, E., Du, X.W., Du, Y.G., Nordlund, D., and Lin, F. (2019). Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries. Journal of the Electrochemical Society, 166(2), A251–A257.
Nanba, Y., Iwao, T., De Boisse, B.M., Zhao, W.W., Hosono, E., Asakura, D., Niwa, H., Kiuchi, H., Miyawaki, J., Harada, Y., Okubo, M., and Yamada, A. (2016). Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chemistry of Materials, 28(4), 1058–1065.
Newman, G.H. and Klemann, L.P. (1980). Ambient-temperature cycling of an Na-TiS2 cell. Journal of the Electrochemical Society, 127(10), 2097–2099.
Nitta, K., Inazawa, S., Sakai, S., Fukunaga, A., Itani, E., Numata, K., Hagiwara, R., and Nohira, T. (2013). Development of molten salt electrolyte battery. SEI Tech. Rev., 76, 27–33.
Nose, M., Shiotani, S., Nakayama, H., Nobuhara, K., Nakanishi, S., and Iba, H. (2013). Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochemistry Communications, 34, 266–269.
Okada, S., Takahashi, Y., Kiyabu, T., Doi, T., Yamaki, J.-I., and Nishida, T. (eds) (2006). Layered transition metal oxides as cathodes for sodium secondary battery. 210th ECS Meeting, Cancun, Mexico. The Electrochemical Society.
Orlandi, F., Aza, E., Bakaimi, I., Kiefer, K., Klemke, B., Zorko, A., and Manuel, P. (2018). Incommensurate atomic and magnetic modulations in the spin-frustrated β− NaMnO2 triangular lattice. Physical Review Materials, 2(7), 074407.
Ortiz-Vitoriano, N., Drewett, N.E., Gonzalo, E., and Rojo, T. (2017). High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy & Environmental Science, 10(5), 1051–1074.
Pan, H.L., Hu, Y.S., and Chen, L.Q. (2013). Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 6(8), 2338–2360.
Parant, J.-P., Olazcuaga, R., Devalette, M., Fouassier, C., and Hagenmuller, P. (1971). Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). Journal of Solid State Chemistry, 3(1), 1–11.
Park, S., Yoon, W.S., and Vogt, T. (2007). Structure and magnetism of the mono-layer hydrate Na0.3NiO2·0.7H2O. Solid State Communications, 142(1–2), 75–79.
Paulsen, J.M. and Dahn, J.R. (1999). Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange. Solid State Ionics, 126(1-2), 3–24.
Paulsen, J.M. and Dahn, J.R. (2000). O-2-Type Li-2/3[Ni1/3Mn2/3]O-2: A new layered cathode material for rechargeable lithium batteries–II. Structure, composition, and properties. Journal of the Electrochemical Society, 147(7), 2478–2485.
Paulsen, J.M., Thomas, C.L., and Dahn, J.R. (2000). O2 structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries I. Electrochemical properties. Journal of the Electrochemical Society, 147(3), 861–868.
Qi, X., Wang, Y., Jiang, L., Mu, L., Zhao, C., Liu, L., Hu, Y.-S., Chen, L., and Huang, X. (2016). Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6−x]O2 layered-oxide cathode materials for sodium-ion batteries. Particle & Particle Systems Characterization, 33(8), 538–544.
Rozier, P., Sathiya, M., Paulraj, A.-R., Foix, D., Desaunay, T., Taberna, P.-L., Simon, P., and Tarascon, J.-M. (2015). Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochemistry Communications, 53(0), 29–32.
Rudnick, R.L. and Gao, S. (2014). 4.1–-Composition of the continental crust. In Treatise on Geochemistry (Second Edition), Holland, H.D., Turekian, K.K. (eds). Elsevier, Oxford, 1–51.
Rüdorff, W. and Becker, H. (1954). Die Strukturen von LiVO2, NaVO2, LiCrO2 und NaCrO2. Zeitschrift für Naturforschung B, 9(9), 614–615.
Sathiya, M., Jacquet, Q., Doublet, M. L., Karakulina, O. M., Hadermann, J., and Tarascon, J. M. (2018). A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Advanced Energy Materials, 8(11), 1702599.
Scholder, R. and Kyri, H. (1952). Über die Oxydation von Mangan(II)‐hydroxyd mit Sauerstoff in konzentrierten Laugen. Zeitschrift für anorganische und allgemeine Chemie, 270(1-4), 56–68.
Shacklette, L.W., Jow, T.R., and Townsend, L. (1988). Rechargeable electrodes from sodium cobalt bronzes. Journal of The Electrochemical Society, 135(11), 2669–2674.
Shacklette, L.W., Toth, J.E., and Elsenbaumer, R.L. (1985). Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery. EP patent application US 1985-749325
Shannon, R. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767.
Shirane, T., Kanno, R., Kawamoto, Y., Takeda, Y., Takano, M., Kamiyama, T., and Izumi, F. (1995). Structure and physical-properties of lithium iron-oxide, LiFeO2, synthesized by ionic exchange-reaction. Solid State Ionics, 79, 227–233.
Shishikura, T., Takeuchi, M., Murakoshi, Y., Konuma, H., and Kameyama, M. (1989). Secondary cobalt sodium oxide-sodium alloy battery. EP patent application.
Shishkin, M., Kumakura, S., Sato, S., Kubota, K., Komaba, S., and Sato, H. (2018). Unraveling the role of doping in selective stabilization of NaMnO2 polymorphs: Combined theoretical and experimental study. Chemistry of Materials, 30(4), 1257–1264.
Singer, A., Zhang, M., Hy, S., Cela, D., Fang, C., Wynn, T.A., Qiu, B., Xia, Y., Liu, Z., Ulvestad, A., Hua, N., Wingert, J., Liu, H., Sprung, M., Zozulya, A.V., Maxey, E., Harder, R., Meng, Y.S., and Shpyrko, O.G. (2018). Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nature Energy, 3(8), 641–647.
Singh, G., Acebedo, B., Cabanas, M.C., Shanmukaraj, D., Armand, M., and Rojo, T. (2013). An approach to overcome first cycle irreversible capacity in P2-Na2/3Fe1/2Mn1/2O2. Electrochemistry Communications, 37, 61–63.
Slater, M.D., Kim, D., Lee, E., and Johnson, C.S. (2013). Sodium-ion batteries. Advanced Functional Materials, 23(8), 947–958.
Stevens, D.A. and Dahn, J.R. (2000). High capacity anode materials for rechargeable sodium-ion batteries. Journal of the Electrochemical Society, 147(4), 1271–1273.
Stoyanova, R., Carlier, D., Sendova-Vassileva, M., Yoncheva, M., Zhecheva, E., Nihtianova, D., and Delmas, C. (2010). Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. Journal of Solid State Chemistry, 183(6), 1372–1379.
Sun, X., Jin, Y., Zhang, C.Y., Wen, J.W., Shao, Y., Zang, Y., and Chen, C.H. (2014). Na[Ni0.4Fe0.2Mn0.4-xTix]O-2: A cathode of high capacity and superior cyclability for Na-ion batteries. Journal of Materials Chemistry A, 2(41), 17268–17271.
Takahashi, Y., Kiyabu, T., Okada, S., Yamaki, J., and Nakane, K. (eds) (2004). The 45th Battery Symposium in Japan. Abstr., 3B23 (2004) [in Japanese].
Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., and Kanno, R. (1994). Sodium deintercalation from sodium iron-oxide. Materials Research Bulletin, 29(6), 659–666.
Talaie, E., Duffort, V., Smith, H.L., Fultz, B., and Nazar, L.F. (2015). Structure of the high voltage phase of layered P2-Na2/3-z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy & Environmental Science, 8(8), 2512–2523.
Talaie, E., Kim, S.Y., Chen, N., and Nazar, L.F. (2017). Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chemistry of Materials, 29(16), 6684–6697.
Thorne, J.S., Chowdhury, S., Dunlap, R.A., and Obrovac, M.N. (2014a). Structure and electrochemistry of NaxFexTi1-xO2 (1.0 ≥ x ≥ 0.75) for Na-ion battery positive electrodes. Journal of The Electrochemical Society, 161(12), A1801–A1805.
Thorne, J.S., Dunlap, R.A., and Obrovac, M.N. (2014b). Investigation of P2-Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. Journal of the Electrochemical Society, 161(14), A2232–A2236.
Toumar, A. J., Ong, S. P., Richards, W. D., Dacek, S., and Ceder, G. (2015). Vacancy Ordering in O 3-Type Layered Metal Oxide Sodium-Ion Battery Cathodes. Physical Review Applied, 4(6), 064002.
Treacy, M.M.J., Newsam, J.M., and Deem, M.W. (1991). A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proceedings of the Royal Society-Mathematical and Physical Sciences, 433(1889), 499–520.
Vassilaras, P., Kwon, D.H., Dacek, S.T., Shi, T., Seo, D.H., Ceder, G., and Kim, J.C. (2017). Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. Journal of Materials Chemistry A, 5(9), 4596–4606.
Vassilaras, P., Ma, X.H., Li, X., and Ceder, G. (2013). Electrochemical properties of monoclinic NaNiO2. Journal of the Electrochemical Society, 160(2), A207–A211.
Vassilaras, P., Toumar, A.J., and Ceder, G. (2014). Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochemistry Communications, 38, 79–81.
Vinckeviciute, J., Radin, M.D., and Van Der Ven, A. (2016). Stacking-sequence changes and Na ordering in layered intercalation materials. Chemistry of Materials, 28(23), 8640–8650.
Wang, H., Liao, X.Z., Yang, Y., Yan, X.M., He, Y.S., and Ma, Z.F. (2016). Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 163(3), A565–A570.
Wang, J., Zhou, Z.F., Li, Y.S., Li, M., Wang, F., Yao, Q.R., Wang, Z.M., Zhou, H.Y., and Deng, J.Q. (2019a). High-rate performance O3-NaNi0.4Mn0.4Cu0.1Ti0.1O2 as a cathode for sodium ion batteries. Journal of Alloys and Compounds, 792, 1054–1060.
Wang, L.G., Wang, J.J., Zhang, X.Y., Ren, Y., Zuo, P.J., Yin, G.P., and Wang, J. (2017a). Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy, 34, 215–223.
Wang, P.F., Yao, H.R., Liu, X.Y., Zhang, J.N., Gu, L., Yu, X.Q., Yin, Y.X., and Guo, Y.G. (2017b). Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Advanced Materials, 29(19).
Wang, Q., Mariyappan, S., Vergnet, J., Abakumov, A. M., Rousse, G., Rabuel, F., and Tarascon, J. M. (2019). Reaching the Energy Density Limit of Layered O3-NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution. Advanced Energy Materials, 9(36), 1901785.
Wang, X.F., Liu, G.D., Iwao, T., Okubo, M., and Yamada, A. (2014). Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties. Journal of Physical Chemistry C, 118(6), 2970–2976.
Wang, X.F., Tamaru, M., Okubo, M., and Yamada, A. (2013). Electrode properties of P2-Na2/3MnyCo1-yO2 as cathode materials for sodium-ion batteries. Journal of Physical Chemistry C, 117(30), 15545–15551.
Wang, Y., Li, W., Hu, G.R., Peng, Z.D., Cao, Y.B., Gao, H.C., Du, K., and Goodenough, J.B. (2019c). Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chemistry of Materials, 31(14), 5214–5223.
Wang, Y., Xiao, R., Hu, Y.S., Avdeev, M., and Chen, L. (2015). P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat.
Commun., 6, 7954.
Watanabe, E., Zhao, W.W., Sugahara, A., De Boisse, B.M., Lander, L., Asakura, D., Okamoto, Y., Mizokawa, T., Okubo, M., and Yamada, A. (2019). Redox-driven spin transition in a layered battery cathode material. Chemistry of Materials, 31(7), 2358–2365.
Wu, D., Li, X., Xu, B., Twu, N., Liu, L., and Ceder, G. (2015). NaTiO2: A layered anode material for sodium-ion batteries. Energy & Environmental Science, 8(1), 195–202.
Xia, X. and Dahn, J.R. (2012). NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid State Letters, 15(1), A1–A4.
Xie, Y., Wang, H., Xu, G., Wang, J., Sheng, H., Chen, Z., Ren, Y., Sun, C.-J., Wen, J., Wang, J., Miller, D.J., Lu, J., Amine, K., and Ma, Z.-F. (2016). In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical
sodium-ion intercalation. Advanced Energy Materials, 6(24), 1601306.
Xu, J., Lee, D.H., and Meng, Y.S. (2013). Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Functional Materials Letters, 6(1), 1330001.
Yabuuchi, N., Ikeuchi, I., Kubota, K., and Komaba, S. (2016). Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. Acs Applied Materials & Interfaces, 8(47), 32292–32299.
Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S. (2012a). P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 11(6), 512–517.
Yabuuchi, N., Yoshida, H., and Komaba, S. (2012b). Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry, 80(10), 716–719.
Yabuuchi, N., Hara, R., Kajiyama, M., Kubota, K., Ishigaki, T., Hoshikawa, A., and Komaba, S. (2014). New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries. Advanced Energy Materials, 4(13), 1301453.
Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S. (2014). Research development on sodium-ion batteries. Chemical Reviews, 114(23), 11636–11682.
Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., and Komaba, S. (2013). Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. Journal of The Electrochemical Society, 160(5), A3131–A3137.
Yao, H.R., Wang, P.F., Gong, Y., Zhang, J.N., Yu, X.Q., Gu, L., Ouyang, C.Y., Yin, Y.X., Hu, E.Y., Yang, X.Q., Stavitski, E., Guo, Y.G., and Wan, L.J. (2017). Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 139(25), 8440–8443.
Yoshida, H., Yabuuchi, N., and Komaba, S. (2013). NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochemistry Communications, 34, 60–63.
Yoshida, H., Yabuuchi, N., Kubota, K., Ikeuchi, I., Garsuch, A., Schulz-Dobrick, M., and Komaba, S. (2014). P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 50(28), 3677–3680.
You, Y., Dolocan, A., Li, W.D., and Manthiram, A. (2019). Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Letters, 19(1), 182–188.
Yu, C.-Y., Park, J.-S., Jung, H.-G., Chung, K.-Y., Aurbach, D., Sun, Y.-K., and Myung, S.-T. (2015). NaCrO2 cathode for high-rate sodium-ion batteries. Energy & Environmental Science, 8(7), 2019–2026.
Yue, J.L., Yin, W.W., Cao, M.H., Zulipiya, S., Zhou, Y.N., and Fu, Z.W. (2015). A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chemical Communications, 51(86), 15712–15715.
Zandbergen, H. W., Foo, M., Xu, Q., Kumar, V., and Cava, R. J. (2004). Sodium ion ordering in NaxCoO2: Electron diffraction study. Physical Review B, 70(2), 024101.
Zhang, B., Dugas, R., Rousse, G., Rozier, P., Abakumov, A. M., and Tarascon, J. M. (2016). Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nature Communications, 7(1), 1-9.
Zhang, Y., Zhang, R., and Huang, Y. (2019). Air-Stable NaxTMO2 Cathodes for Sodium Storage. Frontiers in Chemistry, 7, 335.
Zhao, J., Zhao, L.W., Dimov, N., Okada, S., and Nishida, T. (2013). Electrochemical and thermal properties of alpha-NaFeO2 cathode for Na-ion batteries. Journal of the Electrochemical Society, 160(5), A3077–A3081.
Zheng, L.T., Li, J.R., and Obrovac, M.N. (2017). Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-x,CuxMn2/3O2 in sodium cells. Chemistry of Materials, 29(4), 1623–1631.
Zheng, L.T. and Obrovac, M.N. (2017). Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 <= x <= 0.55) as positive electrode materials for sodium-ion batteries. Electrochimica Acta, 233, 284–291.
Zhou, Y.-N., Ding, J.-J., Nam, K.-W., Yu, X., Bak, S.-M., Hu, E., Liu, J., Bai, J., Li, H., Fu, Z.-W., and Yang, X.-Q. (2013). Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. Journal of Materials Chemistry A, 1(37), 11130–11134.