Читать книгу Multi-Processor System-on-Chip 2 - Liliana Andrade - Страница 34
1.8. References
Оглавление3GPP (2017). Study on new radio access technology Physical layer aspects v14.2.0, TR 38.802 [Online]. Available at: https://bit.ly/2QzxmGc.
3GPP (2018a). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation v15.3.0, TS 36.211, September 2018 [Online]. Available at: https://bit.ly/354hKjf.
3GPP (2018b). NR; Base Station (BS) radio transmission and reception v15.3.0, TS 38.104, September 2018 [Online]. Available at: https://bit.ly/30xf5wE.
3GPP (2018c). NR; Physical channels and modulation v15.0.0, TS 38.211, January 2018 [Online]. Available at: https://bit.ly/2xO4Qrt.
3GPP (2018d). Study on scenarios and requirements for next generation access technologies v15.0.0, TR 38.913 [Online]. Available at: https://bit.ly/2MCblVZ.
3GPP (2019a). Evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception v16.3.0, TS 36.104 [Online]. Available at: https://bit.ly/2xLJSto.
3GPP (2019b). Evolved universal terrestrial radio access (E-UTRA); Physical layer procedures v15.6.0, TS 36.213 [Online]. Available at: https://bit.ly/2SgRopA.
3GPP (2019c). NR; User equipment (UE) radio transmission and reception; Part 1: Range 1 standalone v15.7.0, TS 38.101-1 [Online]. Available at: https://bit.ly/2LUtz5K.
3GPP (2019d). NR; User equipment (UE) radio transmission and reception; Part 2: Range 2 standalone v15.7.0, TS 38.101-2 [Online]. Available at: https://bit.ly/2SfjQIc.
3GPP (2019e). NR; Physical channels and modulation v15.7.0, TS 38.211, September 2019 [Online]. Available at: https://bit.ly/2xO4Qrt.
3GPP (2019f). NR; Physical layer procedures for data v15.4.0, TS 38.214 [Online]. Available at: https://bit.ly/2Gg9aVb.
ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, and TTC (2016). Study on new services and markets technology enablers; Stage 1 v14.2.0, TR 22.891 [Online]. Available at: https://bit.ly/39meeUM.
Damjancevic, S.A., Matus, E., Utyansky, D., van der Wolf, P., and Fettweis, G.P. (2019). Towards GFDM for handsets - Efficient and scalable implementation on a vector DSP. IEEE Vehicular Technology Conference (VTC Fall 2019), 1–7.
Farhang, A., Marchetti, N., and Doyle, L.E. (2016). Low-complexity modem design for GFDM. IEEE Transactions on Signal Processing, 64(6), 1507–1518.
Fettweis, G.P. (2012). A 5G wireless communications vision. Microwave Journal, 55, 24–36 [Online]. Available at: https://bit.ly/368uSW7.
Fettweis, G.P. (2014). The tactile Internet. IEEE Vehicular Technology Magazine, 9(1), 64–70.
Fettweis, G.P., Hassler, M., Wittig, R., Matus, E., Damjancevic, S., Haas, S., Pauls, F., Nam, S., and Grigoryan, N. (2019). A low-power scalable signal processing chip platform for 5G and beyond – Kachel. 2019 53rd Asilomar Conference on Signals, Systems, and Computers.
GFK (2019). Global smartphone sales reached $522 billion in 2018 [Online]. Available at: https://www.gfk.com/insights/press-release/global-smartphone-sales-reached-522-billion-in-2018/ [Accessed 26 December 2019].
ITU (2019a). G.722 : 7 kHz audio-coding within 64 kbit/s [Online]. Available at: https://www.itu.int/rec/T-REC-G.722/e [Accessed 4 August 2020].
ITU (2019b). G.729 : Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP) [Online]. Available at: https://www.itu.int/rec/T-REC-G.729 [Accessed 4 August 2020].
Matthé, M., Mendes, L., Gaspar, I., Michailow, N., Zhang, D., and Fettweis, G.P. (2016). Precoded GFDM transceiver with low complexity time domain processing. EURASIP Journal on Wireless Communications and Networking, 2016(138), 1–9. [Online]. Available at: http://dx.doi.org/10.1186/s13638-016-0633-1.
Michailow, N., Matthé, M., Caldevilla, A.N., Mendes, L.L., Festag, A., and Fettweis, G.P. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3060.
NGMN Alliance (2015). NGMN 5G white paper [Online]. Available at: https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf.
Nimr, A., Chafii, M., and Fettweis, G.P. (2018). Unified low complexity Radix-2 architectures for time and frequency-domain GFDM modem. IEEE Circuits and Systems Magazine, 18(4), 18–31.
Proakis, J.G. and Manolakis, D.G. (1996). Digital Signal Processing: Principles, Algorithms, and Applications, 3rd edition. Prentice-Hall, Upper Saddle River.
Qualcomm (2016). Making 5G NR a reality. Leading the technology innovations for a unified, more capable 5G air interface. CTIA Super Mobility 2016 – 5G Technical Workshop.
Synopsys Inc (2019). ASIP designer [Online]. Available at: https://www.synopsys.com/dw/ipdir.php?ds=asip-designer [Accessed 4 August 2020].
Werther, O., and Minihold, R. (2013). LTE: System specifications and their impact on RF & base band circuits. Application note, Rohde & Schwarz.
1 For a color version of all figures in this book, see www.iste.co.uk/andrade/multi2.zip.
2 1 According to data (GFK 2019), smartphone and related wearables were a $522 billion dollar market in 2018.
3 2 Loosely translated as a single packet of data, for the broader audience.
4 3 Simplified: TTI consists of OFDM symbols, which, in turn, consist of transformed sets of quadrature amplitude modulation (QAM) symbols, which, in turn, consist of transformed sets of soft bits, which are a mix of guard and information bits.
5 4 TTI is inversely scaled with subcarrier frequency spacing (SCS). In 5G, SCS is base spacing (15 kHz, same as 4G) ×2μ and TTI is base TTI (1 ms, same as 4G) ×2−μ.
6 5 We do not have a reference for this rule of thumb, since the actual timing budget distribution is vendor-specific and kept private. This is a first-order approximation.
7 6 1 kRB = 1,000 RB, 1 RB = 12 subcarriers × 2 slots of 7 (6) symbols per slot = 168 (144) RE, (·) – extended Cyclic Prefix (CP) mode possible for μ = 2 or LTE. An RB is a unit in technical terminology representing a grid section onto which QAM symbols are mapped; one element of that grid is called an resource element (RE).
8 7 Simplified: for a radio link.
9 8 Note that this should not be confused with massive MIMO, which uses constructive and destructive interferences of radio waves from multiple antennas to create a single data stream layer.
10 9 4G modulation code rate schemes (MCS) (3GPP 2019b).
11 10 5G MCS (3GPP 2019f).
12 11 This is the lowest rate per smallest channel. Even though a voice call may require between 8 kb/s and 80 kb/s (depending on the codec (ITU 2019a, b)), the block nature of discrete Fourier transform (DFT) and the required sample rate used in 4G forces the modem to work with higher average rates than those required by the application.
13 12 Simplified: simultaneously active multiple channels on different frequencies.
14 13 An additional motivation for having an extent of SW solutions in communication modems is 1) their ability to be exchanged easily via updates, compared to exchanging HW, and 2) they are ideal for multiplexing a multitude of standards on the same HW.
15 14 A self-contained piece of SW or function that fully captures the functionality of an algorithm.
16 15 Note that the first inner loop will not be executed for l = 0.
17 16 At each stage, quantization occurs anew, for example .
18 17 Accumulator quantization: the result of multiplying Q0.n numbers is Q0.2n, which still represents a value in the range [−1, 1), just with 2n bits, where n = databits. This value is then again requantized with ACCbits = m bits.