Читать книгу New research on the kitchen table. Try this again - Лим Ворд, Рем Ворд - Страница 4
Experiments – forgotten, but pretty
Speed and gravity. Empirical research
ОглавлениеImagine that you have an orange in your hand. If you find the power to throw it parallel to the surface of the Earth at a speed of 8 km. with., he will become a companion of our planet and, somewhat simplistically speaking, will lose weight.
Suppose you dropped the fruit at a rate of only a few meters per second. The effect of reducing weight again, will take place, although these changes are measured in fractions of a milligram.
Imagine now that your friend is throwing an orange back. Both of you are standing on a platform of sensitive scales. Will, for the time of this game, the system you-friend-orange, in general, easier?
The simple becomes very complex very quickly. Some additional, more obvious schemes represent that “yes.”
All physical bodies consist of a myriad of “oranges” – elementary particles. The average velocity of oscillatory motion of the latter, at twenty degrees Celsius, is about three hundred meters per second. As the temperature increases, the speed of movement increases.
So, we can expect that with a decrease in body temperature (in a closed system), its weight will increase slightly. And, with increasing T, the pressure on the support will gradually disappear.
To calculate more accurately, it is necessary to combine some formulas for bodies moving along a circle, and also the dependence of the velocity of molecules (acting here as “satellites”) on temperature. Friends, I once did all this, but after so many years from the time of the failed publication in “TM”, much has been forgotten. Try it yourself. The result, in general, is quite interesting. I myself did not conduct full-scale experiments, but I used the data, alas, to measure the body weight of a person before and after his death. The difference is about 10 grams (weight is added).
And the results of calculations, for a body weighing 80 kg, cooling down from 40 C, to 20 C, fully correspond to this.
Experiments with a flywheel unwinding to a certain speed are also known. The weight of the top is reduced.
In this case, the movement of the orange, sorry, is closed in a ring. Nothing more, in fact, does not change.
And, the results of calculations for the top-orange are quite in line with expectations.
…The next simple, complex visual construction. Space station, satellite, … a physical body, sweeping along the surface of the Earth at a speed of 8 km. from. as if lose weight. Well, an object that rushes directly to the center of the planet, from the depths of the Cosmos, let’s set it at a speed of 20 km. from. – What happens to him? Does the Earth, with its gravity, add extra speed to it? Are you sure? Well, if this body moves even with an acceleration above 9.8 m. sq. m. (acceleration of free fall) – also add speed?
There is a feeling that in the celestial mechanics everything is not so simple. Objects moving near planets with velocities are much higher than the acceleration of free fall (at a given distance from the center of mass) of the latter, practically do not obey the influence of “local” gravity.
Perhaps this phenomenon caused many of the failures of Soviet cosmonautics. For example, of the ten missiles launched with the moon, Lunokhods, only two of them reached the surface of Selena. With Mars, the situation is much worse. Most of the vehicles flew past these large celestial bodies.
American scientists are less conservative people, and among their practitioners there are those who could accept the need to amend the known laws of Newton.
…Gravitation depends on the mutual speed of interacting bodies. To some extent this position can be tried to reveal at the level of classical mechanics. But, perhaps, to clarify the details, it is better for us to plunge into the depths of quantum physics.