Читать книгу How Can I Stop Climate Change: What is it and how to help - Литагент HarperCollins USD, F. M. L. Thompson - Страница 120

the art of the possible – the energy-saving house

Оглавление

Six low-energy homes are being built at Nottingham University as part of a teaching project run by the university’s School of the Built Environment.

Reducing energy demand was the starting point for the houses. But it was also crucial, for the purposes of the demonstration, that they did not cost more than conventional properties.

Five of the six houses were designed with different building methods and the latest energy-saving technologies – an upgrade of a 1930s house would complete the project. When the homes are finished, students or staff of the university will live in them, and their energy use will be monitored continually via a website.

Dr Mark Gillott, project leader, explains that making the homes desirable was crucial: ‘We wanted to give the houses a wow factor when people walk in. We want people to think “I want to live in this house.”’

Innovative building techniques are key to making the homes affordable. A four-bedroomed family house – the first property built – uses a lightweight recycled steel frame, rather than bricks and mortar, but with its pitched roof, looks like a conventional home. The frame, which took less than five days to put up, is insulated with plasterboard designed to absorb and give out heat. Savings in construction time and labour costs meant more money could be spent on the latest technologies to generate and conserve energy.

The foundations use an insulated concrete framework; but rather than conventional concrete this is made primarily from ground granulated blast furnace slag – a byproduct of the iron industry, which produces a tenth of the carbon dioxide emissions produced in the manufacture of Portland cement. Good design and renewable technologies combine to provide power and heat. An underground pump channels warm air (11-12°C) into the south-facing conservatory on the ground floor of the house, where it is warmed by the sun, and then pumped into the rest of the house.

In the loft a ventilation and heat-recovery unit converts solar energy from roof-mounted panels to produce hot water and warm air for under-floor heating. South-facing windows are triple-glazed and have blinds and external louvres to stop it getting too hot in summer. Balconies add to natural shade.

Smart energy controls allow the house to respond to changes in the weather – or to be controlled remotely via a website or a phone line. Appliances are all energy-saving models and lighting uses highly efficient light-emitting diodes (LEDs).

A water-saving system uses rainwater for the outside tap, washing machine and downstairs shower; and water from the bath and shower for flushing toilets. Aerators in the shower fittings increase the water pressure, and sensors on tap fittings ensure they are only used when needed.

Dr Gillott says, ‘It’s designed so that there’s plenty of daylight, and it’s a warm and comfortable place to be in winter and ventilated and airy in summer.’ Good design, he emphasises, is crucial. ‘It’s what we say to the architecture students all the time. Don’t leave it to the engineers to bolt on solutions afterwards.’

Two of the five new-build properties will cost under £60,000 and Dr Gillott hopes one of these will achieve zero-carbon status. ‘There are no barriers from the technology to say that we cannot generate all the energy we need. There’s no reason why we can’t generate a zero-carbon home,’ he says. ‘The question is whether the industry will embrace it quickly enough to achieve it. Really, it is only legislation that can make the difference.’

How Can I Stop Climate Change: What is it and how to help

Подняться наверх