Читать книгу Algoritmos Genéticos con Python - Álvaro Rodríguez - Страница 17
I Parte 1: Introducción a los algoritmos genéticos
Оглавление1.1 Introducción a los algoritmos genéticos
1.2 Primeros pasos mediante un problema sencillo
1.3 Definición del problema y generación de la población inicial
1.4 Función objetivo y operadores genéticos
1.6 Últimos pasos: Algoritmo genético como caja negra
1.7 ¿Cómo conseguir resultados consistentes?
1.8 Convergencia del algoritmo
1.9 Exploración versus explotación en algoritmos genéticos
1.10 Código completo y lecciones aprendidas
2.1 Introducción al problema del viajero
2.2 Definición del problema y generación de la población inicial
2.3 Función objetivo y operadores genéticos
2.4 Selección del algoritmo genético
2.6 Comprobar la convergencia del algoritmo en problemas complejos
2.7 Ajuste de los hiperparámetros: Probabilidades de cruce y mutación
2.8 Acelerando la convergencia del algoritmo: El tamaño del torneo
2.9 Acelerando la convergencia del algoritmo: Aplicar elitismo
2.10 Complejidad del problema: P vs NP
2.11 Código completo y lecciones aprendidas
3 Algoritmos genéticos y benchmarking
3.1 Introducción a las funciones de benchmark
3.2 Aprendiendo a usar las funciones de benchmark: Formulación del problema
3.3 Definición del problema y generación de la población inicial
3.4 Función objetivo y operadores genéticos
3.6 Evaluación de algunas funciones de benchmark
3.7 Ajuste de los hiperparámetros de los operadores genéticos
4 Algoritmos genéticos con múltiples objetivos
4.1 Introducción a los problemas con múltiples objetivos
4.2 Introducción a la Pareto dominancia
4.3 Selección del algoritmo genético
4.4 El problema de la suma de subconjuntos con múltiples objetivos