Читать книгу Engineering Acoustics - Malcolm J. Crocker - Страница 73
References
Оглавление1 1 Bies, D.A. and Hansen, C.H. (2003). Engineering Noise Control–Theory and Practice, 3e. London: E & FN Spon.
2 2 Bell, L.H. (1982). Industrial Noise Control – Fundamentals and Applications. New York: Marcel Decker.
3 3 Hall, D.E. (1987). Basic Acoustics. New York: Wiley.
4 4 Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1999). Fundamentals of Acoustics, 4e. New York: Wiley.
5 5 Fahy, F.J. and Walker, J.G. (eds.) (1998). Fundamentals of Noise and Vibration. London: E & FN Spon.
6 6 Lighthill, M.J. (1978). Waves in Fluids. Cambridge: Cambridge University Press.
7 7 Pierce, A.D. (1981). Acoustics: An Introduction to Its Physical Properties and Applications. New York: McGraw‐Hill (reprinted by the Acoustical Society of America, 1989).
8 8 Inman, D.J. (2007). Passive damping. In: Handbook of Noise and Vibration Control (ed. M.J. Crocker), 225–231. New York: Wiley.
9 9 Ungar, E.E. (2007). Damping of structures and use of damping materials. In: Handbook of Noise and Vibration Control (ed. M.J. Crocker), 734–744. New York: Wiley.
10 10 Shabana, A.A. (1997). Vibration of Discrete and Continuous Systems, 2e. New York: Springer‐Verlag.
11 11 Meirovitch, L. (2001). Fundamentals of Vibrations. New York: McGraw‐Hill.
12 12 Lalor, N. (1998). Fundamentals of vibration. In: Fundamentals of Noise and Vibration (eds. F.J. Fahy and J. Walker), 61–114. London: E & FN Spon.
13 13 Kelly, S.G. (2000). Fundamentals of Mechanical Vibrations, 2e. McGraw‐Hill.
14 14 Leissa, A.W. (1993). Vibration of Plates. New York: Acoustical Society of America.
15 15 Berry, A., Guyader, J.L., and Nicolas, J. (1990). A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions. J. Acoust. Soc. Am. 88: 2792–2802.
16 16 Arenas, J.P. (2001) Analysis of the acoustic radiation resistance matrix and its applications to vibro‐acoustic problems. PhD thesis. Auburn University.
17 17 Blevins, R.D. (2015). Formulas for Dynamics, Acoustics and Vibration. New York: Wiley.
18 18 Malecki, I. (1969). Physical Foundations of Physical Acoustics. Oxford: Pergamon Press.
19 19 Arenas, J.P. (2003). On the vibration analysis of rectangular clamped plates using the virtual work principle. J. Sound Vib. 266: 912–918.
20 20 Tao, J.S., Liu, G.R., and Lam, K.Y. (2001). Sound radiation of a thin infinite plate in light and heavy fluids subject to multi‐point excitation. Appl. Acoust. 62: 573–587.