Читать книгу Quantum Mechanical Foundations of Molecular Spectroscopy - Max Diem - Страница 10

Оглавление

Introduction

This book, Quantum Mechanical Foundations of Molecular Spectroscopy, is based on a graduate‐level course by the same name that is being offered to first‐year graduate students in chemistry at the Department of Chemistry and Chemical Biology at Northeastern University in Boston. When I joined the faculty there in 2005, I revised the course syllabus to emphasize the philosophical underpinnings of quantum mechanics and introduce much more of the quantum mechanics of molecular spectroscopy, rather than atomic structure, chemical bonding, and what is commonly referred to as “quantum chemistry.”

As my own appreciation of many aspects of quantum mechanics evolved, I found it useful to start my lectures in this course with a quote from a famous researcher and Nobel laureate (1995, for his work on quantum electrodynamics), the late Professor Richard Feynman, which – taken slightly out of context – reads [6]:

I think I can safely say that nobody understands quantum mechanics.

This rather discouraging statement has to be seen from the viewpoint that, when studying quantum mechanics, one realizes that this theory is not based on axioms, but on postulates – a very unusual fact in the sciences. Furthermore, it replaced deterministic results with probabilistic answers. When exposed to these conundrums, students will naturally ask the question: “Why bother studying quantum mechanics, if I will not understand it anyway?” or worse, “Is quantum mechanics for real, or is it the brainchild of some far‐out mad scientists?” The answer here is also contained in a quote by Feynman:

It doesn't matter how beautiful a theory is, …. If it doesn't agree with experiment, it's wrong.

This statement could also be formulated to imply that a theory that consistently provides answers that agree with the experiment most likely is correct. Thus, although nobody may understand quantum mechanics in its entirety, it gives answers that – over and over – agree with experiments and in fact provides a mechanism and framework for explaining the experimental results.

Quantum mechanics originated in the early decades of the twentieth century, when it was found that some experiment results just could not be explained by existing laws of physics and, in fact, violated established physical dogmas. It was these results that gave rise to the emergence of quantum mechanics that grew out of a patchwork of ideas aimed at explaining these hitherto unexplainable experimental results. These ideas coalesced into the field we now refer to as quantum mechanics. This newly formulated theory was wildly successful in explaining a myriad of physical and chemical observations – from the shape and meaning of the periodic chart of elements to the subject of this book, namely, the interaction of light with matter that is the basis of spectroscopy.

While many aspects of molecular spectroscopy, such as the rotational or vibrational energies of a molecule, can be described in classical terms, the idea that atoms and molecules can exist in quantized, stationary energy states is a direct result of the postulates of quantum mechanics. Furthermore, application of the principles of time‐dependent quantum mechanics explains how electromagnetic radiation of the correct energy may cause a transition between these stationary energy states and produce observable spectra. Thus, the entire field of molecular spectroscopy is a direct result of quantum mechanics and represents the experimental results that confirms the theory. The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. What started as simple molecular spectroscopy such as infrared and Raman vibrational spectroscopy, (microwave) rotational spectroscopy, ultraviolet–visible absorption, and emission spectroscopy has now bloomed into a very broad field that includes, for example, the modern magnetic resonance techniques (including medical magnetic resonance imaging); nonlinear, laser, and fiber‐based spectroscopy; surface and surface‐enhanced spectroscopy; pico‐ and femtosecond time‐resolved spectroscopy, and many more. Spectroscopy is embedded as a major component in material science, chemistry, physics, and biology and other branches of scientific and engineering endeavors. Thus, the quantum mechanical underpinnings of spectroscopy are a major subject that need to be understood in the pursuit of scientific efforts.

References

1 1 Engel, T. and Reid, P. (2010). Physical Chemistry, 2e. Upper Saddle River, NJ: Pearson Prentice Hall.

2 2 Levine, I. (1970). Quantum Chemistry, vol. I&II. Boston: Allyn & Bacon.

3 3 Levine, I. (1983). Quantum Chemistry. Boston: Allyn & Bacon.

4 4 Kauzman, W. (1957). Quantum Chemistry. New York: Academic Press.

5 5 Eyring, H., Walter, J., and Kimball, G.E. (1967). Quantum Chemistry. New Yrok: Wiley.

6 6 Feynman, R. (1964). Probability and Uncertainty: The Quantum Mechanical View of Nature ‐ The Character of Physical Law 1964. Cornell University.

Quantum Mechanical Foundations of Molecular Spectroscopy

Подняться наверх