Читать книгу Кто за главного? Свобода воли с точки зрения нейробиологии - Майкл Газзанига - Страница 10
Глава 1
Какие мы
Процесс, зависящий от активности
ОглавлениеКак обычно и бывает в нейронауке, оказалось, что это еще не конец истории. Вунь Синь, Курт Касс и их коллеги, изучая рост нейронов в оптическом тектуме мозга лягушки, обнаружили, что стимуляция светом позволяет увеличить скорость роста и количество ветвящихся выростов – дендритных шипиков – на кончике нервной клетки. Дендритные шипики проводят электрические импульсы от других нервных клеток, совокупность шипиков одного нейрона называют дендритным деревом. Таким образом, усиленная визуальная активность лягушки способствовала росту ее нервов{18}. В данном случае на рост влияет не только генетически обусловленный хемотаксис, как предполагал Сперри, – активность самого нейрона, его опыт, тоже стимулирует его рост и влияет на взаимосвязи с другими клетками. Это называют процессом, зависящим от активности.
Как ни досадно, результаты недавних исследований подтвердили правоту моей мамы: мне следовало больше заниматься на пианино. На самом деле совершенство любого моторного навыка зависит от времени, потраченного на его отработку. Практика не только меняет эффективность синапсов{19} – недавно было показано{20}, что синаптические связи у мыши быстро реагируют на обучение моторным навыкам и устойчиво меняются. Когда мышь одного месяца от роду обучали протягивать переднюю лапу, у нее быстро (в течение часа!) формировались дендритные шипики. После дрессировки суммарная плотность шипиков возвращалась к исходному уровню за счет ликвидации некоторых старых шипиков и стабилизации новых, сформировавшихся во время обучения. Те же исследователи показали, что различные моторные навыки кодируются различными наборами синапсов. Хорошая новость заключается в том, что мне (или, по крайней мере, мышке) еще не поздно внять совету матери. При освоении новой задачи взрослыми у них также формируются новые дендритные шипики. Плохая же новость в том, что мне все равно придется много практиковаться. Похоже, усвоение двигательных навыков – результат настоящей реорганизации синапсов, а стабилизировавшиеся в итоге нейронные связи, вероятно, становятся основой долговременной моторной памяти.
Ассоциативное обучение – другой пример того, как опыт может влиять на нейронные связи. Если вы видели фильм “Фаворит”, то, должно быть, помните, как коня по кличке Сухарь переучивали трогаться с места – начинать бежать при звуке колокола. Когда звонил колокол, коня сильно ударяли стеком по боку. Это вызывало у него реакцию бегства, так что он начинал двигаться. После нескольких повторений он срывался с места уже от одного только звука колокола. В конце концов он победил прежнего чемпиона Восточного побережья – скакуна по кличке Адмирал Войны.
Итак, хотя в целом связи нейронных сетей контролируются генетически, внешние стимулы окружающей среды и обучение также влияют на рост нейронов и их взаимосвязи. Согласно современным представлениям о мозге, его крупномасштабный план обусловлен генетически, а вот специфические связи на локальном уровне зависят от активности, а также от эпигенетических факторов и опыта. Важны как наследственность, так и среда, что подтвердит вам любой наблюдательный родитель или хозяин домашних животных.
Предсуществующая сложность
Психология развития человека изобилует примерами, показывающими, что маленькие дети интуитивно знают кое-что из области физики, биологии и психологии. На протяжении многих лет Элизабет Спелк в Гарвардском университете и Рене Байяржон в Иллинойском университете исследовали, что малыши знают о физике. Взрослые принимают такое знание как само собой разумеющееся и редко задаются вопросом о его происхождении. Скажем, кофейная чашка на столе при обычных обстоятельствах не вызовет у вас особого интереса. Однако если она вдруг поднимется к потолку, то всерьез привлечет ваше внимание – вы не сможете оторвать от нее глаз. Ведь получится, что она нарушает закон притяжения! Вы молчаливо полагаете, что предметы подчиняются ряду правил, а если они перестают это делать – таращитесь на них. И вы бы вперили взгляд в эту чашку, даже если бы никогда не изучали закон притяжения в школе. То же самое относится и к маленькому ребенку. Если его бутылочка внезапно взлетит к потолку, она завладеет его вниманием.
Итак, маленькие дети дольше смотрят на предметы, которые ведут себя странно с точки зрения некоего набора правил. Исследователи захотели выяснить, что же это за правила для ребенка. Байяржон помещала мячик перед младенцами трех с половиной месяцев от роду, а затем закрывала его экраном. Потом она незаметно убирала игрушку. Когда экран отодвигали, а мячика за ним не оказывалось, малыши поражались. Значит, они, по-видимому, уже кое-что усвоили из законов физики: один твердый предмет не может пройти сквозь другой. К трем с половиной месяцам младенцы уже считают, что предметы не изменяются и уж точно не исчезают, скрываясь из виду{21}. Как показали другие эксперименты, маленькие дети ожидают, что предмет сохранит свою целостность, а не распадется на части, если его за что-то дернуть. Они также рассчитывают, что объект, который исчез за экраном, сохранит свою форму, когда появится снова: мячик не должен превратиться в плюшевого мишку. Они полагают, что предметы движутся вдоль непрерывных траекторий, а не скачут через разрывы в пространстве, и догадываются о форме частично спрятанного предмета по его видимой части: полусфера, когда ее полностью откроют, должна оказаться мячиком, у которого не должно быть, например, ног. Малыши также считают, что предметы не двигаются сами по себе, пока что-то их не коснется, и что они твердые и не могут проходить сквозь другие предметы{22}. Это знание, которое определяется генетически и с которым мы рождаемся. Но почему мы вправе утверждать, что это не выученное знание? По той причине, что младенцы по всему миру обладают одинаковыми знаниями в одном и том же возрасте независимо от того, в какой среде живут.
Предсуществующая сложность, вероятно, встроена также и в зрительную систему человека. На уровне восприятия у нас работает множество встроенных автоматических процессов. Скажем, мы далеко не всегда видим то, что в действительности находится у нас перед глазами. Давно известно, что два абсолютно одинаковых круга кажутся разными по яркости, если у каждого из них свой фон. Серый круг на темном фоне кажется нам более светлым, чем точно такая же фигура на фоне посветлее.
Освещенность объекта, строго говоря, определяется падающим на него светом, тем, который отражается от его поверхности, и прозрачностью среды (например, ее уменьшает туман или фильтр, через который мы смотрим) между наблюдателем и объектом. Световая величина, непосредственно воспринимаемая глазом, называется яркостью. Однако соответствие между освещенностью объекта и его воспринимаемой яркостью не такое простое. Если меняется хотя бы один из трех параметров, относительная интенсивность света, достигающего глаза, может как измениться, так и остаться прежней в зависимости от сочетанного влияния данных параметров. Приведу пример. Окиньте взглядом четыре стены комнаты, в которой вы находитесь. Даже если все они одного цвета, одна стена может казаться ярче другой в зависимости от того, как обе освещены. Если стены белые, то одна из них может казаться ярко-белой, другая светло-серой, а третья темно-серой. Войдите в эту же комнату позже, при другом освещении, – вероятно, изменится и яркость стен. Таким образом, между источником визуальных стимулов и теми элементами, комбинация которых порождает эти стимулы, нет четкой взаимосвязи. Зрительная система не способна догадаться, как эти факторы сложились вместе и создали уровень яркости определенного предмета, свет от которого достигает сетчатки.
Как такая система возникла? Исследователи Дейл Первис, Бью Лотто и их коллеги из Университета Дьюка показали, что поведение эффективно, только когда реакции соответствуют источнику стимула, а не измеримым параметрам самого стимула. А это достигается только благодаря прошлому опыту – как индивидуальному, так и эволюционному{23}. Например, умение оценивать яркость зрелого плода, висящего на фоне листвы, давало больше преимущества, чем способность различать конкретные оптические параметры. Иными словами, ученые предположили, что визуальная цепочка и итоговое восприятие были отобраны такими, какие они есть, в силу того, что зрительно-опосредованное поведение в прошлом оказывалось эффективным. “Если эта идея справедлива, значит, в тех случаях, когда стимул соответствует одинаково отражающим поверхностям, расположенным под одним источником света, яркость объектов будет казаться одинаковой. Однако, если стимул согласуется с прошлым опытом зрительной системы, имеющим отношение к объектам разной отражательной способности при разном освещении, яркость объектов будет казаться неодинаковой”{24}. Суть в том, что мы этого не осознаем. Наша система зрительного восприятия развивалась в процессе отбора, чтобы иметь такие сложные автоматические механизмы уже встроенными.