Читать книгу Engineering Physics of High-Temperature Materials - Nirmal K. Sinha - Страница 79
References
Оглавление1 Akanuma, H. (2005). The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman‐Kalehöyük, Turkey. Anatolian Archaeol. Stud.. Tokyo: Japanese Institute of Anatolian Archaeology. 14: 147–158.
2 Arzt, E. (1991). Creep of dispersion strengthened materials: a critical assessment. Res. Mech. 31: 399–453.
3 ASM International (2000). Titanium – A Technical Guide. USA: American Society for Metals (ASM) International.
4 ASMH (1991). Aerospace Structural Metals Handbook (ASMH), vol. 5. Columbus, Ohio, USA (Logistics Agency Department of Defense, Belfour Stulen Inc., 1991): Metals and Ceramic Information Center, Battelle Columbus Division.
5 Balikci, E. and Raman, R. (2000). Characteristics of the γ′ precipitates at high temperatures in Ni‐base polycrystalline superalloy IN738. J. Mater. Sci. 35: 3593.
6 Belan, J. (2016). GCP and TCP phases presented in nickel‐base superalloys. Mater. Today: Proc. 3 (4): 936–941. https://doi.org/10.1016/j.matpr.2016.03.024.
7 Bernal, J. (1959). A geometrical approach to the structure of liquids. Nature 183: 141–147. https://doi.org/10.1038/183141a0.
8 Betteridge, W. and Heslop, J. (1974). The Nimonic Alloys and Other Nickel‐Base High‐Temperature Alloys, Chapters 1 to 7. London: Edward Arnold Publishers Limited.
9 Boesch, W. (1989). Introduction—Superalloys. In: Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 1. Boston: Academic Press, Inc.
10 Bowman, R. (2000). Superalloys: A Primer and History. Supplement to the 9th International Symposium on Superalloys. The Minerals, Metals and Materials Society. Retrieved July 27, 2020 https://www.tms.org/meetings/specialty/superalloys2000/superalloyshistory.html.
11 Boyer, R., Welsch, G., and Collings, E.W. (1994). Materials Properties Handbook: Titanium Alloys. Metals Park, Ohio, USA: American Society for Metals (ASM) International, The Materials Information Society (See section Ti‐6Al‐2Sn‐4Zr‐6Mo, pp. 465‐481).
12 Brini, E., Fennell, C.J., Fernandez‐Serra, M. et al. (2017). How water's properties are encoded in its molecular structure and energies. Chem. Rev. 117: 12385–12414. https://doi.org/10.1021/acs.chemrev.7b00259.
13 British Standard Institution (1975). Glossary of Rheological Terms, BS 5168. BSI Standards.
14 Bushwick, Sophia (2013). What Stresses Gorilla Glass Makes It Stronger, Inside Science, Retrieved June 28, 2020 https://www.insidescience.org/news/what‐stresses‐gorilla‐glass‐makes‐it‐stronger
15 Caesar, A.G. (2019). Iron carbon phase diagram.svg Wikipedia Commons. Accessed July 27, 2020 from https://commons.wikimedia.org/wiki/File:Iron_carbon_phase_diagram.svg. (Licensed under the Creative Commons Attribution‐Share Alike 4.0 International https://creativecommons.org/licenses/by‐sa/4.0/legalcode).
16 Carter, G.F. and Paul, D.E. (1991). Materials Science and Engineering. OH, USA: ASM International.
17 Chaplin, M. (n.d.). Water Structure and Science: Water Phase Diagram, Retrieved July 6, 2020 www1.lsbu.ac.uk/water/water_phase_diagram.html.
18 Corning (n.d.). A Look Behind Gorilla Glass: What is it and how is it made? Corning | Gorilla Glass Retrieved June 28, 2020 https://www.corning.com/gorillaglass/worldwide/en/a‐look‐behind‐corning‐gorilla‐glass.html.
19 Davidovits J. (2005). Geopolymer, Green Chemistry and Sustainable Development Solutions. Proceedings of the World Congress Geopolymer 2005, Geopolymer Institute, pp. 222–223.
20 DeVoe, H. (n.d.). Thermodynamics and Chemistry, LibreTexts Libraries. Retrieved March 05, 202 https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoe's_%22Thermodynamics_and_Chemistry%22
21 Dieter, G.E. (1961). Mechanical Metallurgy. New York: McGraw‐Hill Book Company, Inc.
22 Duhl, D.N. (1987). Directionally solidified superalloys. In: Superalloys II, Chapt. 7 (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 189–214. New York: John Wiley & Sons, Inc.
23 Dutt, A.K., Gwalani, B., and Tungala, V. (2019). A novel nano‐particle strengthened titanium alloy with exceptional specific strength. Sci. Rep. 9: 11726. https://doi.org/10.1038/s41598‐019‐48139‐8.
24 Elenius, M. and Dzugutov, M. (2009). Evidence for a liquid‐solid critical point in a simple monatomic system. J. Chem. Phys. 131: 104502.
25 Erickson, G.L. (1996). The development and application of CMSX‐10. In: Superalloys (eds. R.D. Kissinger, D.J. Deye, D.L. Anton, et al.), 35–44. Warrendate, USA: The Minerals, Metals and Materials Society.
26 Evstropyev, K.S. (1953). The crystalline theory of glass structure. Proceedings of the structure of glass, pp. 9–15 in 1958 Translation *(pp 9–18 in original Russian). Leningrad, Nov. 23–27, 1953, Academy of Sciences USSR Press, (Translated from Russian by Consultants Bureau, INC, New York, 1958).
27 Eylon, D., Fujishiro, S., and Postans, P.J. (1984). High‐temperature titanium alloys—A review. JOM 36: 55. https://doi.org/10.1007/BF03338617.
28 Ferguson, C. (2008). Historical introduction to the development of materials science and engineering as a teaching discipline, The Higher Education Academy, UK Centre for Materials Education, Liverpool
29 Flory, P.J. (1949). The configuration of real polymer chains. J. Chem. Phys. 17 (3): 303–310.
30 Giamei, A.F. and Anton, D.L. (1985). Rhenium additions to a ni‐base superalloy: effects on microstructure. Metall. Trans., V. 16A: 1997–2005.
31 Gibbs, W.J. (1874–1878). On the Equilibrium of Heterogeneous Substances, vol. 3. New Haven: Transactions of the Connecticut Academy of Arts and Sciences.
32 Gogia, A.K. (2005). High‐temperature titanium alloys. Def. Sci. J. 55 (2): 143–173.
33 Greaves, G.N. and Sen, S. (2007). Inorganic glasses, glass‐forming liquids and amorphous solids. Adv. Phys. 56 (1): 1–166.
34 Griffith, A.A. (1921). The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond., Series A: Containing papers of a Mathematical or Physical Character 221: 163–198.
35 Hsich, H.S.‐Y. (1980). Physical and thermodynamic aspects of the glassy state and intrinsic non‐linear behaviour of creep and stress relaxation. J. Mater. Sci. 15: 1194–1206.
36 Ikawa, H., Shin, S., and Nakao, Y. (1974). Study on Hot Cracks in Cast Ni‐Base Superalloy, B‐1900. Trans. Jpn. Weld. Soc. 5: 57.
37 International Glaciological Society (2009). Cover photo of ice. News bulletin of the International Glaciological Society 149 (1) ISSN 0019–1043.
38 Jafary‐Zadeh, M., Praveen, G.K., Branicio, P.S. et al. (2018). A critical review on metallic glasses as structural materials for cardiovascular stent applications. J. Funct. Biomater. 9 (1): 19. https://doi.org/10.3390/jfb9010019.
39 Jones, D.A. and Westerman, R.E. (1965). Oxidation of a Ni‐2 percent ThO2 alloy and the logarithmic rate law of oxidation. Corrosion 21: 295.
40 Kelly, T.J. (1990). In (Eds.) R.A. Patterson and K.W. Mahin. Proceedings of Symposium on Weldability of Materials, Detroit, MI, USA, ASM International, p. 151.
41 Khan, M.M., Nemati, A., Rahman, Z.U. et al. (2017). Recent advancements in bulk metallic glasses and their applications: a review. Crit. Rev. Solid State Mater. Sci.: 1–36. https://doi.org/10.1080/10408436.2017.1358149.
42 Landau, L.D. and Lifshitz, E.M. (1980). Statistical Physics, 3e, vol. 5. Oxford: Butterworth‐Heinemann, Pergamon.
43 Lebedev, A.A. (1912). Polymorphism and tempering of glass. Trans. Optical Inst. 2: 1–18, Leningrad.
44 Lebedev, A.A. (1926). Annealing optical glass, Rev. Optique, 5, pp. 1–30, Cerami. Abs., 6(1), 11 (1927).
45 Lebedev, A.A. (1940). The structure of glasses according to X‐ray data and their optical properties. Bull. Acad. Sci. 4 (4): 584.
46 Lutgens, F.K. and Tarbuck, E.J. (2000). Essentials of Geology, 7e. United States of America: Prentice Hall.
47 Mak, T.C.W. and Gong‐Du, Z. (1992). Crystallography in Modern Chemistry: A Resource Book of Crystal Structures. United States of America: Wiley.
48 Michalske, T.A. and Bunker, B.C. (1987). The fracturing of glass. Sci. Am. 257 (6): 122–129.
49 Mochizuki, K. and Koga, K. (2015). Solid−liquid critical behavior of water. Proc. Natl. Acad. Sci. 112 (27): 8221–8226. https://doi.org/10.1071/pnas.1422829112.
50 Monroe, J.S., Wicander, R., and Hazlett, R.W. (2006). Physical Geology: Exploring the Earth, 6e, 203–204. Belmont: Thomson.
51 Natole, R. (1995). Global Gas Turbine News, 4. International Gas Turbine Institute, ASME.
52 Porter, D.A. and Easterling, K., E. (1992). Phase Transformation in Metals and Alloys, 294. London: Chapman and Hall.
53 Prager, M. and Shira, C.S. (1968). Welding of precipitation hardening nickel‐base alloys. Weld. Res. Counc. Bull. (6): 128–155.
54 Rahaman, M.N. (2014). Bioactive ceramics and glasses for tissue engineering. In: Tissue Engineering Using Ceramics and Polymers: Second Edition (eds. A.R. Boccaccini and P.X. Ma), 67–114. Cambridge: Woodhead Publishing (imprint of Elsevier). https://doi.org/10.1533/9780857097163.1.67.
55 Reed‐Hill, R.E. and Abbaschian, R. (1992). Physical Metallurgy Principles, 3e. Boston, MA: PWS‐Kent Publishing Company.
56 Ross, E.W. and Sims, C.T. (1987). Nickel‐Base alloys. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 97–133. New York: A Wiley‐Interscience Publication, John Wiley & Sons.
57 Sabol, G.P. (1969). Microstructure of nickel‐based superalloys. Phys. Status Solidi B 35 (1): 11–52. https://doi.org/10.1002/pssb.19690350102.
58 Sauer, C. and Lütjering, G. (2001). Thermo‐mechanical processing of high strength β‐titanium alloys and effects on microstructure and properties. J. Mater. Process. Technol. 117 (3): 311–317.
59 Sinha, N.K. (1971). On the Studies of Rheo‐Optical Response of Plate Glass in a Wide Temperature Range, Ph.D. Thesis. University of Waterloo, Waterloo, Ontario, Canada.
60 Stephens, J.R. (1989). Chapter 2 ‐ Resources—Supply and Availability. In: Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 9. Boston: Academic Press, Inc.
61 Stoloff, N.S. (1987). Fundamentals of strengthening. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 61–96. New York: A Wiley‐Interscience Publication, John Wiley & Sons.
62 Thamburaj, R., Wallace, W., and Goldak, J.A. (1983). Post‐weld heat‐treatment cracking in superalloys. Int. Metals Rev. 28: 1. 1–22, DOI: 10.1179/imtr.1983.28.1.1
63 Uginet, J.F. (1994). Processing of near‐beta Ti alloys for high strength applications. In: Beta‐Titanium Alloys (eds. A. Vassel, D. Eylon and Y. Combres), 33–40. Paris: SF2M.
64 United States Geological Survey (2012). Facts About Nickel: Nickel Uses, Resources, Supply, Demand, and Production Information. Geoscience news and Information. Republished from a USGS Fact Sheet from March 2012. Retrieved July 27, 2020 https://geology.com/usgs/uses‐of‐nickel/#:~:text=Earth's%20nickel%20core%3A%20The%20average,composed%20of%20iron%20and%20nickel.
65 Vainshtein, B.K., Cardona, M., Fulde, P., and Queisser, H.‐J. (1982). Modern crystallography I, symmetry of crystals. Methods of structural crystallography. Cryst. Res. Technol. 17: 352–352. https://doi.org/10.1002/crat.2170170316.
66 Valenti, M. (1999). Mechanical engineering. ASME 121: 45.
67 VerSnyder, F.L. and Guard, R.W. (1960). Directional grain structure for high temperature strength. Trans. ASM 52: 485.
68 VerSnyder, F.L. and Shank (1970). Mater. Sci. Eng. 6: 213.
69 Vinci, A., Zoli, L., Sciti, D. et al. (2018). Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. Mater. Des. 145: 97–107. https://doi.org/10.1016/j.matdes.2018.02.061.
70 Ward‐Harvey, K. (2009). Fundamental Building Materials, 4e, 83–90. Florida: USA: Universal‐Publishers. ISBN 978‐1‐59942‐954‐0.
71 Warren, B.E. (1940). Geometrical considerations in glass. J. Soc. Glas. Technol. 24: 159.
72 West, T.R. (1995). Geology Applied to Engineering, 560. Englewood Cliffs, New Jersey: Prentice‐Hall, Inc.
73 Wood, R.A. and Favor, R.J. (1972). Titanium Alloys Handbook. Ohio, USA: Air Force Materials Laboratory, Wright‐Paterson Air Force Base, 1‐7:72‐1.
74 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54 (10): 3841–3851.