Читать книгу Сила франчайзинга. Как компания РОББО построила топовую международную EdTech-франшизу - Павел Фролов - Страница 7

Раздел I
Технологии – это не магия!
Глава 2
«В XXI веке на уроках надо собирать роботов, а не табуретки!»

Оглавление

15 минут – столько сегодня нужно ребенку, чтобы с помощью оборудования «РОББО» собрать первого робота и запрограммировать его на какие-то действия. Увидев, как это просто, дети обычно приходят в восторг. Команде удалось создать конструктор, который помогает сделать процесс обучения основам программирования увлекательным: с роботами уроки информатики становятся интереснее и понятнее.

Сначала компания «Тырнет» предложила школам наборы схемотехники с Arduino, но учителям оказалось сложно работать с большим количеством датчиков, лампочек и моторчиков. К тому же дети могли легко вывести микроконтроллер из строя: уронить, облить водой, положить в груду скрепок. Тогда плату упаковали в прозрачный антивандальный корпус из оргстекла. Получившийся картридж стал основой для двух устройств: цифровой лаборатории и робоплатформы.

Цифровая лаборатория (рис. 3) стала мостиком из реального мира в виртуальный. Благодаря трем установленным датчикам – света, звука и переменного резистора – электронное устройство собирает данные об окружающей среде: громко там или тихо, тепло или холодно, темно или светло. Эта информация передается на компьютер, и ее можно использовать при написании программ. Например, сделать так, чтобы в зависимости от освещения в комнате менялось положение солнышка на экране.

Это идеальный инструмент для первого погружения детей в мир интернета вещей, который позволяет понять, как работают современные гаджеты для «умного дома», например шторы, открывающиеся утром при звонке будильника. Кроме датчиков к устройству подключены светодиоды, что позволяет сделать из него, например, эмулятор светофора или «умную лампочку», которая реагирует на движение. А еще в плату встроена крестовина кнопок: лаборатория легко превращается в геймпад для компьютерной игры, написанной ребенком на языке Scratch, или в пульт управления робоплатформой.


Рис. 3. Цифровая лаборатория


Робоплатформа (рис. 4), наоборот, соединяет виртуальный мир с реальным. С помощью компьютерной программы дети могут управлять роботом: научить его ездить по линии или менять траекторию движения при встрече с препятствием. Функциональность зависит лишь от фантазии автора программы.

Устройство представляет собой модульную моторизированную платформу на колесах, к которой с помощью магнитов крепятся датчики. Это одна из главных ее фишек, позволившая сделать процесс сборки быстрым. Секунда – и к роботу надежно прикреплен датчик касания. Еще одна – и вот уже спереди красуется фара. Дальше ребенок собирает для него программу в системе Scratch, словно разноцветный пазл, и наслаждается результатом, наблюдая за тем, как робот выполняет заданные команды. Обычно первые задачи, которые программируют дети, – гонки роботов, поиск выхода из лабиринта или робофутбол.


Рис. 4. Робоплатформа


В 2010 году первые версии устройств прошли апробацию в нескольких московских школах. Идея разнообразить уроки информатики с помощью роботов-исполнителей понравилась как детям, так и педагогам. Также стало понятно, что потенциал проекта ScratchDuino намного больше. Робототехника способна не просто сделать более наглядными и интересными уроки математики, физики, информатики, биологии и химии, но и показать, как эти предметы связаны между собой.

Модель, в которой объединены все отрасли естественно-научного и технического знания, лежит в основе STEM-образования:

S – science (наука);

T – technology (технология);

Е – engineering (инженерия);

М – mathematics (математика).

Главная цель такого подхода – преодолеть оторванность классического обучения отдельным дисциплинам от реальной жизни. Его краеугольный камень – проектная работа, когда ребенок получает знания не из учебника, а через решение творческих задач. Например, работая над проектом «умной теплицы», школьники понимают, как температура окружающей среды, влажность почвы и освещенность влияют на растения, и учатся управлять этими параметрами с помощью алгоритмов.

STEM-технологии давно используют в американских и некоторых европейских школах. В России эта тенденция только начинает распространяться, так что проект ScratchDuino попал «в яблочко». В 2014 году в Агентстве стратегических инициатив (АСИ) анонсировали Национальную техническую инициативу (НТИ), суть которой в том, что в 2035 году у нашей страны перестанут покупать нефть и газ. И к тому времени вместо природных ресурсов России нужно начать экспортировать инновационные продукты: электромобили, компьютеры, устройства с искусственным интеллектом. Для этого необходимо создать сотни новых технологичных компаний, которые будут продавать на экспорт товаров минимум на 300–400 миллиардов долларов в год.

Кто в них будет работать? Нынешние школьники. Но система образования не готовит их к этому. В большинстве школ предмет «Технология» до сих преподают так же, как несколько десятилетий назад: учат выпиливать лобзиком и шить фартуки. После анонса НТИ о необходимости преобразования этих занятий впервые заговорили на государственном уровне вплоть до президента России, который дал указание модернизировать уроки технологии и проработать модель научно-технических кружков в школах. А в 2018 году Минпросвещения РФ утвердило новую концепцию преподавания технологии и обновило Федеральный государственный образовательный стандарт. Новый ФГОС предполагает введение в образовательный процесс таких предметов, как программирование, 3D-моделирование, прототипирование, робототехника, системы автоматического управления, технологии «умного дома», интернета вещей и других.

При взаимодействии с АСИ и кружковым движением НТИ в «РОББО» разработали отдельный комплексный продукт для школ – инженерный инновационный «РОББО Класс» (рис. 5). Кроме цифровых лабораторий и робоконструкторов, линейка оборудования для него включает 3D-принтеры, наборы для изучения интернета вещей, станки с числовым программным управлением и программное обеспечение для них.

– Мы считаем, что в XXI веке на уроках надо собирать роботов, а не табуретки! Эти устройства позволяют познакомить ребят со всеми популярными способами обработки материалов и изучить основы микроэлектроники и схемотехники. Из них нам удалось создать наборы для подготовки «цифровых джедаев» будущего: людей, которые глубоко понимают, как устроены любые новые продукты, и сами могут их разрабатывать, – говорит Павел Фролов.

Рис. 5. «Цифровые джедаи» будущего в «РОББО Классе»


После выхода на рынок «РОББО Классов» оказалось, что готовых решений такого уровня не так уж много не только в России, но и за рубежом. Сейчас комплекты для инновационных инженерных классов покупают как частные школы, так и общеобразовательные учреждения в разных уголках планеты. Интересно, что российское оборудование и методики используют даже на родине роботов – в самой технологичной стране мира – Японии. В 2019 году, после победы компании в конкурсе Fukuoka Startup Day, «РОББО Классы» были протестированы в японских школах, а затем министерство экономики Японии включило их в программу школьного субсидирования.

Сила франчайзинга. Как компания РОББО построила топовую международную EdTech-франшизу

Подняться наверх