Читать книгу Wheat - Peter R. Shewry - Страница 51

References

Оглавление

1 AHDB (2011). HGCA Grain Storage Guide for Cereals and Oilseeds, 3e. Agriculture and Horticulture Development Board.

2 Allaby, R.G., Stevens, C., Lucas, L. et al. (2017). Geographic mosaics and changing rates of cereal domestication. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160429. https://doi.org/10.1098/rstb.2016.0429.

3 Allen, A.M., Wilkinson, P., Burridge, A. et al. (2021). The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nature Plants 7: 172–183. https://doi.org/10.1038/s41477‐020‐00845‐2.

4 Anderson, K., Ivanic, M., and Martin, W. (2013). Food price spikes, price insulation, and poverty. In: The Economics of Food Price Volatility (eds. J.‐P. Chavas, J. Hummels and B.D. Wright), 311–339. National Bureau of Economic Research https://www.nber.org/books‐and‐chapters/economics‐food‐price‐volatility/food‐price‐spikes‐price‐insulation‐and‐poverty.

5 Arranz‐Otaegui, A., Carretero, L.G., Ramsey, M.N. et al. (2018). Archaebotanical evidence reveals the origins of bread 14400 years ago in northeastern Jordan. Proceedings of the National Academy of Science, USA 115: 7925–7930. https://doi.org/10.1073/pnas.1801071115.

6 Austin, R.B., Morgan, C.L., Ford, M.A. et al. (1982). Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Annals of Botany 49 (2): 177–189. https://doi.org/10.1093/oxfordjournals.aob.a086238.

7 Austin, R.B., Ford, M.A., and Morgan, C.L. (1989). Genetic improvement in the yield of winter‐wheat – a further evaluation. Journal of Agricultural Science 112: 295–301. https://doi.org/10.1017/S0021859600085749.

8 Bakker, J.T. (1999). The mills‐bakeries of Ostia: description and interpretation. Dutch Monographs on Ancient History and Archaeology 21: 131.

9 Barber, H.M., Carney, J., Alghabari, F. et al. (2015). Decimal growth stages for precision wheat production in changing environments? Annals of Applied Biology 166 (3): 355–371. https://doi.org/10.1111/aab.12207.

10 Bates, B., Lennox, A., Prentice, A. et al. (Eds.) (2014a). National Diet and Nutrition Survey: Results from Years 1–4 (combined) of the Rolling Programme (2008/2009–2011/2012). Executive Summary. Public Health England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/594360/NDNS_Y1_to_4_UK_report_executive_summary_revised_February_2017.pdf

11 Bates, B., Lennox, A., Prentice, A. et al. (Eds.) (2014b). National Diet and Nutrition Survey: Results from Years 1‐4 (combined) of the Rolling Programme (2008/2009–2011/2012). Public Health England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/216484/dh_128550.pdf

12 Bellemare, M.F. (2015). Rising food prices, food price volatility, and social unrest. American Journal of Agricultural Economics 97 (1): 1–21. https://doi.org/10.1093/ajae/aau038.

13 Blackman, J.A. and Payne, P.I. (1987). Grain quality. In: Wheat Breeding, Its Scientific Basis (ed. F.G.H. Lupton), 455–485. Chapman and Hall.

14 Borojevic, K. and Borojevic, K. (2005). The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. Journal of Heredity 96 (4): 455–459. https://doi.org/10.1093/jhered/esi060.

15 Braun, H.J. and Sãulescu, N.N. (2002). Breeding winter and facultative wheat. In: Bread Wheat Improvement and Production. FAO Plant Production and Protection Series No. 30 (eds. B.C. Curtis, S. Rajaram and H. Gómez Macpherson). Food and Agriculture Organization of the United Nations http://www.fao.org/3/Y4011E/y4011e0f.htm#bm15.

16 Breasted, J.H. (1916). Ancient Times: A History of the Early World. An Introduction to the Study of Ancient History and the Career of Early Man. Ginn and Company.

17 Brinton, J. and Uauy, C. (2019). A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrated Plant Biology 61: 337–358. https://doi.org/10.1111/jipb.12741.

18 Brouns, F., van Rooy, G., Shewry, P. et al. (2019). Adverse reactions to wheat or wheat components. Comprehensive Reviews in Food Science and Food Safety 18: 1437–1452. https://doi.org/10.1111/1541‐4337.12475.

19 Carson, G.R. and Edwards, N.M. (2009). Criteria of wheat and flour quality. In: Wheat: Chemistry and Technology, 4e (eds. K. Khan and P.R. Shewry), 97–118. AACC International.

20 Cassman, K.G. and Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability 3 (4): 262–268. https://doi.org/10.1038/s41893‐020‐0507‐8.

21 CGC (2020). Official Grain Grading Guide. Canadian Grain Commission.

22 Chamberlain, N., Collins, T.H., and McDermott, E.E. (1982). The influence of α‐amylase on loaf properties in the UK. Proceedings of the 7th World Cereal and Bread Congress: 841–845.

23 Chapman, G.P. (1996). The Biology of Grasses. CAB International.

24 Clarke, M.P., Gooding, M.J., and Jones, S.A. (2004). The effects of irrigation, nitrogen fertilizer and grain size on Hagberg falling number, specific weight and blackpoint of winter wheat. Journal of the Science of Food and Agriculture 84 (3): 227–236. https://doi.org/10.1002/jsfa.1657.

25 Cookson, M. (2019). The rise and fall of the millstone. Cereal Foods World 64 (4) https://doi.org/10.1094/CFW‐64‐4‐0038.

26 Dardonville, M., Urruty, N., Bockstaller, C. et al. (2020). Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agricultural Systems 184: 102913. https://doi.org/10.1016/j.agsy.2020.102913.

27 Dewey, D.D. (1984). The genomic system of classification as a guide to intergenome hybridisation with the perennial Triticeae. In: Gene Manipulation in Plant Improvement. 16th Stadler Genetics Symposium (ed. J.P. Gustafson), 209–279. Plenum Press.

28 Dibb, D.W. (2000). The mysteries (myths) of nutrient use efficiency. Better Crops with Plant Food 84 (3): 3–5. http://www.ipni.net/publication/bettercrops.nsf/0/02DEA6DA6511C494852579800081FC4B/$FILE/Better%20Crops%202000‐3%20p03.pdf.

29 Donald, C.M. (1962). In search of yield. Journal of the Australian Institute of Agricultural Science 28: 171–178.

30 Draper, S.R. and Stewart, B.A. (1980). Procedures for the comparative assessment of quality in crop varieties. III. Methods used in assessing grain protein content, Hagberg falling number, ease of milling and the baking quality of wheat varieties. Journal of the National Institute of Agricultural Botany 15: 194–197.

31 Dubcovsky, J. and Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 316: 1862–1866. https://doi.org/10.1126/science.1143986.

32 Dvořák, J., Luo, M.C., Yang, Z.L. et al. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics 97 (4): 657–670. https://doi.org/10.1007/s001220050942.

33 Dvořák, J., Akhunov, E.D., Akhunov, A.R. et al. (2006). Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Molecular Biology and Evolution 23 (7): 1386–1396. https://doi.org/10.1093/molbev/msl004.

34 Erenstein, O. and Laxmi, V. (2008). Zero tillage impacts in India's rice–wheat systems: a review. Soil and Tillage Research 100 (1–2): 1–14. https://doi.org/10.1016/j.still.2008.05.001.

35 EU (2006). Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims made on Foods. Official Journal of the European Union L404/9 https://eur‐lex.europa.eu/eli/reg/2006/1924/oj.

36 EU (2012). Commission Regulation (EU) No 1047/2012 of 8 November 2012 amending Regulation (EC) No 1924/2006 with regard to the list of nutrition claims. Official Journal of the European Union L310/36 http://data.europa.eu/eli/reg/2012/1047/oj.

37 Evans, L.T. (1993). Crop Evolution, Adaptation and Yield. Cambridge University Press.

38 Evers, A.D., Cox, R.I., Shaheedullah, M.Z. et al. (1990). Predicting milling extraction rate by image analysis of wheat grains. In: Aspects of Applied Biology, 25, Cereal Quality II (eds. G.F.J. Milford, P.S. Kettlewell, J.H. Orson, et al.), 417–426. Association of Applied Biologists.

39 Evers, A., Nesbitt, M., and Gooding, M.J. (2006). Wheat. In: The Encyclopedia of Seeds: Science, Technology and Uses (eds. J.D. Bewley, M. Black and P. Halmer), 752–755. CAB International.

40 FAO (2021). FAOSTAT Food and Agriculture Data. Food and Agriculture Organization of the United Nations http://www.fao.org/faostat/en/#home.

41 Faridi, H. (1988). Flat breads. In: Wheat: Chemistry and Technology Volume II, 3e (ed. Y. Pomeranz), 457–505. American Association of Cereal Chemists.

42 Feekes, W. (1941). De Tarwe en haar milieu. In: Verslag XVII. Technkche, 560–561. Tarwe Commission.

43 Feldman, M. (2001). Origin of cultivated wheat. In: The World Wheat Book: A History of Wheat Breeding (eds. A.P. Bonjean and W.J. Angus), 3–56. Lavoisier Publishing.

44 Feldman, M. and Levy, A.A. (2005). Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research 109 (1–3): 250–258. https://doi.org/10.1159/000082407.

45 Flintham, J.E. (2000). Different genetic components control coat‐imposed and embryo‐imposed dormancy in wheat. Seed Science Research 10: 43–50. https://doi.org/10.1017/S0960258500000052.

46 Ford, M. (1987). Quality requirements for milling and baking. In: Aspects of Applied Biology 15, Cereal Quality, 10–17. Association of Applied Biologists.

47 Fu, Y.‐B., Peterson, G.W., Horbach, C. et al. (2019). Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proceedings of the National Academy of Sciences 116 (40): 20002–20008. https://doi.org/10.1073/pnas.1909564116.

48 Fuller, D.Q., Willcox, G., and Allaby, R.G. (2012). Early agricultural pathways: moving outside the ‘core area’ hypothesis in Southwest Asia. Journal of Experimental Botany 63 (2): 617–633. https://doi.org/10.1093/jxb/err307.

49 Fullington, J.G., Miskelly, D.M., Wrigley, C.W. et al. (1987). Quality related endosperm proteins in sulfur‐deficient and normal wheat grain. Journal of Cereal Science 5: 233–246. https://doi.org/10.1016/S0733‐5210(87)80025‐5.

50 Garnett, T. (1883). The cultivation of wheat. In: Essays in Natural History and Agriculture. Chiswick Press.

51 Gbegbelegbe, S., Cammarano, D., Asseng, S. et al. (2017). Baseline simulation for global wheat production with CIMMYT mega‐environment specific cultivars. Field Crops Research 202: 122–135. https://doi.org/10.1016/j.fcr.2016.06.010.

52 Gegas, V.C., Nazari, A., Griffiths, S. et al. (2010). A genetic framework for grain size and shape variation in wheat. The Plant Cell 22: 1046–1056. https://doi.org/10.1105/tpc.110.074153.

53 Gill, B.S., Appels, R., Botha‐Oberholster, A.M. et al. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168 (2): 1087–1096. https://doi.org/10.1534/genetics.104.034769.

54 Glover, N.M., Redestig, H., and Dessimz, C. (2016). Homoeologs: what are they and how do we infer them? Trends in Plant Science 21: 609–621. https://doi.org/10.1016/j.tplants.2016.02.005.

55 Gonzalez‐Thuillier, I., Salt, L., Chope, C. et al. (2015). Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions. Journal of Agricultural and Food Chemistry 63: 10705–10716. https://doi.org/10.1021/acs.jafc.5b05289.

56 Gooding, M.J. (2009). The wheat crop. In: Wheat: Chemistry and Technology, 4e (eds. K. Khan and P.R. Shewry), 35–70. AACC International.

57 Gooding, M.J. (2017). The effects of growth environment and agronomy on grain quality. In: Cereal Grains, 2e (eds. C. Wrigley, I. Batey and D. Miskelly), 493–512. Woodhead Publishing https://doi.org/10.1016/B978‐0‐08‐100719‐8.00018‐8.

58 Gooding, M.J., Cosser, N.D., Thompson, A.J. et al. (1998). Sheep grazing and defoliation of contrasting varieties of organically grown winter wheat with and without undersowing. Grass and Forage Science 53 (1): 76–87. https://doi.org/10.1046/j.1365‐2494.1998.00106.x.

59 Guzman, C., Peña, R.J., Singh, R. et al. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics 11: 3–8. https://doi.org/10.1016/j.atg.2016.10.004.

60 Harrell, D.M., Wilhelm, W.W., and McMaster, G.S. (1993). Scales – a computer‐program to convert among 3 developmental stage scales for wheat. Agronomy Journal 85: 758–763. https://doi.org/10.2134/agronj1993.00021962008500030043x.

61 Harrell, D.M., Wilhelm, W.W., and McMaster, G.S. (1998). Scales 2: computer program to convert among developmental stage scales for corn and small grains. Agronomy Journal 90: 235–238. https://doi.org/10.2134/agronj1998.00021962009000020021x.

62 Hatcher, D.W., Lukow, O.M., and Dexter, J.E. (2006). Influence of environment on Canadian hard white spring wheat noodle quality. Cereal Foods World 51 (4): 184–190.

63 He, F., Pasan, R., and Shi, F. (2019). Exome sequencing highlights the role of wild‐relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics 51: 896–904. https://doi.org/10.1038/s41588‐019‐0382‐2.

64 Hemery, Y., Rouau, X., Lullien‐Pellerin, V. et al. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 46: 327–347. https://doi.org/10.1016/j.jcs.2007.09.008.

65 Henry, A.G., Brooks, A.S., and Piperno, D.R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Science, USA 108: 486–491. https://doi.org/10.1073/pnas.1016868108.

66 Henry, A.G., Brooks, A.S., and Piperno, D.R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution 69: 44–54. https://doi.org/10.1016/j.jhevol.2013.12.014.

67 Hillel, D. (1991). Out of the Earth: Civilization and the Life of the Soil. Aurum Press Ltd.

68 Hook, S.C. (1984). Specific weight and wheat quality. Journal of the Science of Food and Agriculture 35 (10): 1136–1141. https://doi.org/10.1002/jsfa.2740351013.

69 Huang, S. and Miskelly, D. (2019). Steamed bread – a review of manufacturing, flour quality requirements, and quality evaluation. Cereal Chemistry 96 (1): 8–22. https://doi.org/10.1002/cche.10096.

70 Huang, S., Sirikhachornkit, A., Su, X. et al. (2002). Genes encoding plastid acetyl‐CoA carboxylase and 3‐phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences 99 (12): 8133–8138. https://doi.org/10.1073/pnas.072223799.

71 IMF (2021). IMF Primary Commodity Prices. International Monetary Fund https://www.imf.org/en/Research/%20commodity‐prices.

72 Jacob, H.E. (1977). Six Thousand Years of Bread. Its Holy and Unholy History. Skyhorse Publishing.

73 Ji, T., Penning, B., and Baik, B.K. (2018). Pre‐harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics. Journal of Cereal Science 83: 110–115. https://doi.org/10.1016/j.jcs.2018.08.006.

74 Kent, N.L. and Evers, A.D. (1994). Kent's Technology of Cereals, 4e. Woodhead Publishing.

75 Kihara, H. (1929). Conjugation of homologous chromosomes in genus hybrids Triticum x Aegilops and species hybrids of Aegilops. Cytologia 1: 1–15.

76 Kihara, H. (1954). Considerations of the evolution and distribution of Aegilops species based on the Analyser method. Cytologia 19: 336–357.

77 Kilian, B., Özkan, H., Pozzi, C. et al. (2009). Domestication of the Triticeae in the Fertile Crescent. In: Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol. 7 (eds. G. Muehlbauer and C. Feuillet). Springer https://doi.org/10.1007/978‐0‐387‐77489‐3_3.

78 Kweon, M., Slade, L., and Levine, H. (2011). Solvent Retention Capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat‐based food processes and in wheat breeding: a review. Cereal Chemistry 88: 537–552. https://doi.org/10.1094/CCHEM‐07‐11‐0092.

79 Lachman, J., Martinek, P., Kotíková, Z. et al. (2017). Genetics and chemistry of pigments in wheat grain – a review. Journal of Cereal Science 74: 145–154. https://doi.org/10.1016/j.jcs.2017.02.007.

80 Landes, A. and Porter, J.R. (1989). Comparison of scales used for categorising the development of wheat, barley, rye and oats. Annals of Applied Biology 115: 343–360. https://doi.org/10.1111/j.1744‐7348.1989.tb03393.x.

81 Laskowski, W., Górska‐Warsewicz, H., Rejman, K. et al. (2019). How important are cereals and cereal products in the average polish diet? Nutrients 11: 679–692. https://doi.org/10.3390/nu11030679.

82 Lev, E., Kislev, M.E., and Bar‐Yosef, O. (2005). Mousterian vegetal food in Kebara cave, Mt. Carmel. Journal of Archaeological Science 32 (3): 475–484. https://doi.org/10.1016/j.jas.2004.11.006.

83 Lillywhite, R.D. and Sarrouy, C. (2014). A Review of the Dietary, Health and Environmental Status of Whole Grain Cereals. University of Warwick.

84 Lin, Z.‐J., Miskelly, D.M., and Moss, H.J. (1990). Suitability of various Australian wheats for chinese‐style steamed bread. Journal of the Science of Food and Agriculture 53: 203–213. https://doi.org/10.1002/jsfa.2740530208.

85 Lunn, G.D., Major, B.J., Kettlewell, P.S. et al. (2001). Mechanisms leading to excess alpha‐amylase activity in wheat (Triticum aestivum, L) grain in the UK. Journal of Cereal Science 33 (3): 313–329. https://doi.org/10.1006/jcrs.2001.0369.

86 Mares, D., Rathjen, J., Mrva, K. et al. (2009). Genetic and environmental control of dormancy in white‐grained wheat (Triticum aestivum L.). Euphytica 168 (3): 311–318. https://doi.org/10.1007/s10681‐009‐9927‐2.

87 Miller, T.E. (1987). Systematics and evolution. In: Wheat Breeding: Its Scientific Basis (ed. F.G.H. Lupton), 1–30. Chapman and Hall.

88 Mithen, S. (2012). Thirst: Water & Power in the Ancient World. Orion Publishing Group.

89 Monfreda, C., Ramankutty, N., and Foley, J.A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22: GB1022. https://doi.org/10.1029/2007GB002947.

90 Montgomery, D.R. (2007). Dirt: The Erosion of Civilisations. University of California Press.

91 Moss, H.J. (1973). Quality standards for wheat varieties. Journal of the Australian Institute of Agricultural Science 39: 109–115.

92 Nalam, V.J., Vales, M.I., Watson, C.J.W. et al. (2006). Map‐based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theoretical and Applied Genetics 112: 373–381. https://doi.org/10.1016/j.gene.2014.03.034.

93 Nesbitt, M. (2001). Wheat evolution: integrating archaeological and biological evidence. In: Wheat Taxonomy: The Legacy of John Percival (eds. P.D.S. Caligari and P.E. Brandham), 37–59. Academic Press.

94 Newman, C. (2008). Grain Storage: Maintaining Grain Quality. Western Australia, Department of Agriculture and Food.

95 O'Mara, F.P. (2012). The role of grasslands in food security and climate change. Annals of Botany 110 (6): 1263–1270. https://doi.org/10.1093/aob/mcs209.

96 Payne, P.I., Nightingale, M.A., Krattiger, A.F. et al. (1987). The relationship between HMW glutenin subunit composition and the bread‐making quality of British‐grown wheat varieties. Journal of the Science of Food and Agriculture 40 (1): 51–65. https://doi.org/10.1002/jsfa.2740400108.

97 Pearson, T., Wilson, J., Gwirtz, J. et al. (2007). Relationship between single wheat kernel particle‐size distribution and Perten SKCS 4100 hardness index. Cereal Chemistry 84 (6): 567–575. https://doi.org/10.1094/CCHEM‐84‐6‐0567.

98 Peel, M.C., Finlayson, B.L., and Mcmahon, T.A. (2007). Updated world map of the Köppen‐Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4 (2): 439–473. https://hal.archives‐ouvertes.fr/hal‐00298818.

99 Peña, R.J. (2002). Wheat for bread and other foods. In: Bread Wheat Improvement and Production (eds. B.C. Curtis, S. Rajaram and H. Gómez Macpherson), 483–542. Food and Agriculture Organization of the United Nations http://www.fao.org/3/Y4011E/y4011e0w.htm#bm32.

100 Peña, R.J., Braun, H.J., and Mollins, J. (2017). Anti‐wheat fad diets undermine global food security efforts: wheat consumption healthy despite claims in self‐help publications. In: The Wheat and Nutrition Series: A Compilation of Studies on Wheat and Health, 1–19. CIMMYT https://repository.cimmyt.org/xmlui/handle/10883/19130.

101 Percival, J. (1921). The Wheat Plant: A Monograph. Duckworth and Co.

102 Perkins, J.H. (1997). Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War. Oxford University Press.

103 Peterson, C. (1995). Bread and the British Economy c1770–1870. New York: Scolar Press and Ashgate Publishing 246 pp.

104 Rajaram, S., Van Ginkel, M., and Fischer, R.A. (1993). CIMMYT's wheat breeding mega‐environments (ME). In Proceedings of the 8th International Wheat Genetics Symposium (pp. 1101–1105).

105 Rebetzke, G.J., Bonnett, D.G., and Reynolds, M.P. (2016). Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of Experimental Botany 67 (9): 2573–2586. https://doi.org/10.1093/jxb/erw081.

106 Reeves, J.T. and Roy, N. (1974). Wheat breeding. Journal of the Department of Agriculture, Western Australia, Series 4 15 (2): 39–43. https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol15/iss2/3.

107 Rickman, G. (1980). The grain trade under the Roman Empire. Memoirs of the American Academy in Rome 36: 261–275. https://doi.org/10.2307/4238709.

108 Roberts, E. (1847). On the management of wheat. Journal of the Royal Agricultural Society of England 8: 60–77.

109 Rubel, W. (2011). Bread: A Global History. Reaktion Books.

110 Ruske, R.E., Gooding, M.J., and Dobraszczyk, B.J. (2004). Effects of triazole and strobilurin fungicide programmes, with and without late‐season nitrogen fertiliser, on the baking quality of Malacca winter wheat. Journal of Cereal Science 40 (1): 1–8. https://doi.org/10.1016/j.jcs.2004.03.003.

111 Rustgi, S., Shewry, P., Brouns, F. et al. (2019). Wheat seed proteins: factors influencing their content, composition, and technological properties, and strategies to reduce adverse reactions. Comprehensive Reviews in Food Science and Food Safety 18 (6): 1751–1769. https://doi.org/10.1111/1541‐4337.12493.

112 Sapone, A., Bai, J.C., Ciacci, C. et al. (2012). Spectrum of gluten‐related disorders: consensus on new nomenclature and classification. BMC Medicine 10 (1): 1–12. https://doi.org/10.1186/1741‐7015‐10‐13.

113 Sarrafi, A., Ecochard, R., and Grignac, P. (1989). Genetic variability for some grain quality characters in tetraploid wheats. Plant Varieties and Seeds 2: 163–169.

114 Scott, J.C. (2017). Against the Grain: A Deep History of the Earliest States. Yale University Press.

115 Shewry, P.R., Tatham, A.S., Barro, F. et al. (1995). Biotechnology of breadmaking: unravelling and manipulating the multi‐protein gluten complex. Biotechnology 13: 1185–1190. https://doi.org/10.1038/nbt1195‐1185.

116 Shewry, P.R., Wan, Y., Hawkesford, M.J. et al. (2019). Spatial distribution of functional components in the starchy endosperm of wheat grains. Journal of Cereal Science 91: 102869. https://doi.org/10.1016/j.jcs.2019.102869.

117 Shiferaw, B., Smale, M., Braun, H.J. et al. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5 (3): 291–317. https://doi.org/10.1007/s12571‐013‐0263‐y.

118 Simmonds, N.W. and Smartt, J. (1999). Principles of Crop Improvement, 2e. Blackwell Science.

119 Sinclair, T.R. (1998). Historical changes in harvest index and crop nitrogen accumulation. Crop Science 38: 638–643. https://doi.org/10.2135/cropsci1998.0011183X003800030002x.

120 Slade, L. and Levine, H. (1994). Structure‐function relationships of cookie and cracker ingredients. In: The Science of Cookie and Cracker Production (ed. H. Faridi), 23–141. New York: Chapman & Hall.

121 Smith, L.G., Jones, P.J., Kirk, G.J. et al. (2018). Modelling the production impacts of a widespread conversion to organic agriculture in England and Wales. Land Use Policy 76: 391–404. https://doi.org/10.1016/j.landusepol.2018.02.035.

122 Snape, J.W., Hyne, V., and Aitken, K. (1993). Targeting genes in wheat using marker mediated approaches. Proceedings of the Eighth International Wheat Genetics Symposium 2: 749–759.

123 Tadesse, G., Algieri, B., Kalkuhl, M. et al. (2016). Drivers and triggers of international food price spikes and volatility. In: Food Price Volatility and its Implications for Food Security and Policy (eds. M. Kalkuhl, J. von Braun and M. Torero), 59–82. Springer.

124 Tanno, K.I. and Willcox, G. (2012). Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the near east. Vegetation History and Archaeobotany 21 (2): 107–115. https://doi.org/10.1007/s00334‐011‐0316‐0.

125 Taylor, B.R., Cranstoun, D.A.S., and Roscrow, J.C. (1993). The quality of winter wheat varieties for distilling from Scottish sites. In: Aspects of Applied Biology 36, Cereal Quality III (eds. P.S. Kettlewell, J.R. Garstang, C.M. Duffus, et al.), 481–489. Association of Applied Biologists.

126 Thomas, H. (2017). The War Between Trees and Grasses. Cambrian Printers.

127 Tottman, D.R. (1987). The decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology 110 (2): 441–454. https://doi.org/10.1111/j.1744‐7348.1987.tb03275.x.

128 Turnbull, K.M. and Rahman, S. (2002). Endosperm texture in wheat. Journal of Cereal Science 36 (3): 327–337. https://doi.org/10.1006/jcrs.2002.0468.

129 Urruty, N., Tailliez‐Lefebvre, D., and Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development 36 (1): 15. https://doi.org/10.1007/s13593‐015‐0347‐5.

130 USFDA (1999). Health Claim Notification for Whole Grain Foods. U.S. Food & Drug Administration https://www.fda.gov/food/food‐labeling‐nutrition/health‐claim‐notification‐whole‐grain‐foods.

131 Uthayakumaran, S. and Wrigley, C. (2017). Wheat: grain‐quality characteristics and management of quality requirements. In: Cereal Grains: Assessing and Managing Quality, 2e (eds. C. Wrigley, I. Batey and D. Miskelly), 91–134. Woodhead Publishing https://doi.org/10.1016/B978‐0‐08‐100719‐8.00005‐X.

132 Vaidyanathan, L.V. (1987). Precision and reliability of measuring Hagberg falling number of wheat including variability associated with crop husbandry and grain handling. In: Aspects of Applied Biology 15, Cereal Quality, 495–513. Association of Applied Biologists.

133 Van der Kamp, J.W., Poutanen, K., Seal, C.J. et al. (2014). The HEALTHGRAIN definition of “whole grain”. Food & Nutrition Research 58: 22100. https://doi.org/10.3402/fnr.v58.22100.

134 Wang, L., Yao, Y., He, Z. et al. (2013). Determination of phenolic acid concentrations in wheat flours produced at different extraction rates. Journal of Cereal Science 57: 67–72. https://doi.org/10.1016/j.jcs.2012.09.013.

135 Ward, J.L., Poutanen, K., Gebruers, K. et al. (2008). The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. Journal of Agricultural and Food Chemistry 56 (21): 9699–9709. https://doi.org/10.1021/jf8009574.

136 Weiss, E., Wetterstrom, W., Nadel, D. et al. (2004). The broad spectrum revisited: evidence from plant remains. Proceedings of the National Academy of Sciences 101 (26): 9551–9555. https://doi.org/10.1073/pnas.0402362101.

137 Wieser, H. (2000). Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. European Food Research and Technology 211: 262–268. https://doi.org/10.1007/s002170000165.

138 Wieser, H., Gutser, R., and Von Tucher, S. (2004). Influence of sulphur fertilisation on quantities and proportions of gluten protein types in wheat flour. Journal of Cereal Science 40 (3): 239–244. https://doi.org/10.1016/j.jcs.2004.05.005.

139 Wilson, W.W., and Dahl, B.L. (2002). Marketing of wheat on a constant and nil moisture basis. Agribusiness & Applied Economics Report No. 496. North Dakota State University. doi:10.22004/ag.econ.23638

140 Wrigley, C.W. (2009). Wheat: a unique grain for the world. In: Wheat Chemistry and Technology, 4e (eds. K. Khan and P.R. Shewry), 1–17. AACC International https://doi.org/10.1016/B978‐1‐891127‐55‐7.50008‐2.

141 Zadoks, J.C., Chang, T.T., and Konzak, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research 14: 415–421.

142 Zhao, F.J., Hawkesford, M.J., and McGrath, S.P. (1999a). Sulphur assimilation and effects on yield and quality of wheat. Journal of Cereal Science 30 (1): 1–17. https://doi.org/10.1006/jcrs.1998.0241.

143 Zhao, F.J., Salmon, S.E., Withers, P.J.A. et al. (1999b). Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. Journal of Cereal Science 30 (1): 19–31. https://doi.org/10.1006/jcrs.1998.0244.

144 Zohary, D., Harlan, J.R., and Vardi, A. (1969). The wild diploid progenitors of wheat and their breeding value. Euphytica 18: 58–65. https://link.springer.com/content/pdf/10.1007/BF00021982.pdf.

Wheat

Подняться наверх