Читать книгу Quantum Mechanics for Nuclear Structure, Volume 2 - Professor Kris Heyde - Страница 11
1.3 The Pauli spin matrices
ОглавлениеThe Pauli spin matrices, σx,σy,σz, possess a number of useful properties. We redefine them by σj,σk,σl,(j,k,l)=(x,y,z). Then
σj2=σk2=σl2=Iˆ,(1.20)
σjσk+σkσj=0,forj≠k,(1.21)
i.e.
{σj,σk}=2δjkIˆ,(1.22)
where ‘{, }’ is an anticommutator bracket (also written ‘ [,]+’). Further,
[σj,σk]=2iεjklσl,(1.23)
where
εjkl≡εklj≡εljk≡1;εkjl≡εjlk≡εlkj≡−1.(1.24)
From equations (1.22) and (1.23)
σjσk=−σkσj=iσl.(1.25)
Also,
σj†=σj,(1.26)
det(σj)=−1,(1.27)
tr(σj)=0.(1.28)
For the three-dimensional Cartesian vector a⃗, σ⃗·a⃗ is a 2 × 2 matrix2:
σ⃗·a⃗≔σxax+σyay+σzaz,(1.29)
∴σ⃗·a⃗=azax−iayax+iay−az.(1.30)
This leads to the important identity:
(σ⃗·a⃗)(σ⃗·b⃗)=a⃗·b⃗Iˆ+iσ⃗·(a⃗×b⃗).(1.31)
This can be obtained from equations (1.22) and (1.23):
(σ⃗·a⃗)(σ⃗·b⃗)=∑jσjaj∑kσkbk.(1.32)
∴(σ⃗·a⃗)(σ⃗·b⃗)=∑j∑k12{σj,σk}+12[σj,σk]ajbk,(1.33)
∴(σ⃗·a⃗)(σ⃗·b⃗)=∑j∑k(δjk+iεjklσl)ajbk,(1.34)
∴(σ⃗·a⃗)(σ⃗·b⃗)=a⃗·b⃗Iˆ+iσ⃗·(a⃗×b⃗).(1.35)
If the components of a⃗ are real then
(σ⃗·a⃗)2=∣a⃗∣2Iˆ,(1.36)
where ∣a⃗∣ is the magnitude of the vector a⃗.