Читать книгу Quantum Mechanics for Nuclear Structure, Volume 2 - Professor Kris Heyde - Страница 18
1.10 Spherical harmonics and wave functions
ОглавлениеSpherical harmonics naturally arise when using three-dimensional position wave functions in quantum mechanics. Thus, for the position eigenkets ∣r⃗〉:
∣α〉=∫dr⃗∣r⃗〉〈r⃗∣α〉,(1.216)
the position wave function Ψα(r⃗) is the amplitude 〈r⃗∣α〉 and Ψα(r⃗) is often expressed in spherical polar coordinates:
Ψα(r⃗)=Rα(r)Ωα(θ,ϕ).(1.217)
The functions Ωα(θ,ϕ) are then expanded in terms of spherical harmonics
Ωα(θ,ϕ)=∑lmcαlmYlm(θ,ϕ).(1.218)
Within the above framework, we can define direction eigenkets ∣nˆ〉, nˆ=r⃗r:
∣α〉=∫dnˆ∣nˆ〉〈nˆ∣α〉;(1.219)
and for
∣lm〉=∫dnˆ∣nˆ〉〈nˆ∣lm〉,(1.220)
〈nˆ∣lm〉=Ylm(θ,ϕ)=Ylm(nˆ),(1.221)
i.e. Ylm(θ,ϕ) is the amplitude for the state ∣lm〉 to be found in the direction nˆ specified by θ and ϕ.